Inflammation Research

, Volume 61, Issue 3, pp 189–196 | Cite as

Annexin A1 protein attenuates cyclosporine-induced renal hemodynamics changes and macrophage infiltration in rats

  • Leandro Pires Araujo
  • Renata Ramos Truzzi
  • Gloria Elisa Florido Mendes
  • Marcus Alexandre Mendes Luz
  • Emmanuel A. Burdmann
  • Sonia Maria Oliani
Original Research Paper



Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity.


Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups.


CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration.


ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.


Acute renal injury Annexin A1 Cyclosporine nephrotoxicity Immunosuppression Inflammation 



Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Grant 2008/01,048-9 to L.P.A.); Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq (Grant 306,074/2007-9 to S.M.O. and 307,371/2006-9 to E.A.B.).

Conflict of interest

The authors have no competing financial interests to disclose in relation to this manuscript.


  1. 1.
    Burdmann E, Bennett W. Nephrotoxicity of calcineurin and mTOR inhibitors. In: De Broe M, Porter G, Bennett W, editors. Clinical Nephrotoxins. New York: Springer; 2008. p. 403–71.Google Scholar
  2. 2.
    Bennett W, Burdmann E, Andoh T, Houghton D, Lindsley J, Elzinga L. Nephrotoxicity of immunosuppressive drugs. Nephrol Dial Transplant. 1994;9(Suppl 4):141–5.PubMedGoogle Scholar
  3. 3.
    Burdmann E, Andoh T, Lindsley J, Houghton D, Bennett W. Effects of oral magnesium supplementation on acute experimental cyclosporin nephrotoxicity. Nephrol Dial Transplant. 1994;9:16–21.PubMedGoogle Scholar
  4. 4.
    English J, Evan A, Houghton D, Bennett W. Cyclosporine-induced acute renal dysfunction in the rat. Evidence of arteriolar vasoconstriction with preservation of tubular function. Transplantation. 1987;44:135–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Nielsen F, Jensen B, Marcussen N, Skøtt O, Bie P. Inhibition of mineralocorticoid receptors with eplerenone alleviates short-term cyclosporin A nephrotoxicity in conscious rats. Nephrol Dial Transplant. 2008;23:2777–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghaznavi R, Zahmatkesh M, Kadkhodaee M, Mahdavi-Mazdeh M. Cyclosporine effects on the antioxidant capacity of rat renal tissues. Transplant Proc. 2007;39:866–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Shihab F, Andoh T, Tanner A, Noble N, Border W, Franceschini N, et al. Role of transforming growth factor-beta 1 in experimental chronic cyclosporine nephropathy. Kidney Int. 1996;49:1141–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Young B, Burdmann E, Johnson R, Alpers C, Giachelli C, Eng E, et al. Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity. Kidney Int. 1995;48:439–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Vieira JJ, Noronha I, Malheiros D, Burdmann E. Cyclosporine-induced interstitial fibrosis and arteriolar TGF-beta expression with preserved renal blood flow. Transplantation. 1999;68:1746–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Flower R. Eleventh Gaddum memorial lecture, Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol. 1988;94:987–1015.PubMedGoogle Scholar
  11. 11.
    Gerke V, Creutz C, Moss S. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Oliani S, Paul-Clark M, Christian H, Flower R, Perretti M. Neutrophil interaction with inflamed postcapillary venule endothelium alters annexin 1 expression. Am J Pathol. 2001;158:603–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Perretti M, Ingegnoli F, Wheller S, Blades M, Solito E, Pitzalis C. Annexin 1 modulates monocyte-endothelial cell interaction in vitro and cell migration in vivo in the human SCID mouse transplantation model. J Immunol. 2002;169:2085–92.PubMedGoogle Scholar
  14. 14.
    Oliani S, Damazo A, Perretti M. Annexin 1 localisation in tissue eosinophils as detected by electron microscopy. Mediators Inflamm. 2002;11:287–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamal A, Flower R, Perretti M. An overview of the effects of annexin 1 on cells involved in the inflammatory process. Mem Inst Oswaldo Cruz. 2005;100(Suppl 1):39–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Gastardelo T, Damazo A, Dalli J, Flower R, Perretti M, Oliani S. Functional and ultrastructural analysis of annexin A1 and its receptor in extravasating neutrophils during acute inflammation. Am J Pathol. 2009;174:177–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Oliani S, Ciocca G, Pimentel T, Damazo A, Gibbs L, Perretti M. Fluctuation of annexin-A1 positive mast cells in chronic granulomatous inflammation. Inflamm Res. 2008;57:450–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Gavins F, Yona S, Kamal A, Flower R, Perretti M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood. 2003;101:4140–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Scannell M, Maderna P. Lipoxins and annexin-1: Resolution of inflammation and regulation of phagocytosis of apoptotic cells. ScientificWorldJournal. 2007;6:1555–73.CrossRefGoogle Scholar
  20. 20.
    La M, D’Amico M, Bandiera S, Di Filippo C, Oliani S, Gavins F, et al. Annexin 1 peptides protect against experimental myocardial ischemia-reperfusion: analysis of their mechanism of action. FASEB J. 2001;15:2247–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Cuzzocrea S, Tailor A, Zingarelli B, Salzman A, Flower R, Szabó C, et al. Lipocortin 1 protects against splanchnic artery occlusion and reperfusion injury by affecting neutrophil migration. J Immunol. 1997;159:5089–97.PubMedGoogle Scholar
  22. 22.
    Gavins F, Kamal A, D’Amico M, Oliani S, Perretti M. Formyl-peptide receptor is not involved in the protection afforded by annexin 1 in murine acute myocardial infarct. FASEB J. 2005;19:100–2.PubMedGoogle Scholar
  23. 23.
    Gavins F, Dalli J, Flower R, Granger D, Perretti M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 2007;21:1751–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Facio FN, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MA, et al. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med (Berl) 2010; 89:51–63.Google Scholar
  25. 25.
    Araujo L, Truzzi R, Mendes G, Luz M, Burdmann E, Oliani S. Interaction of the anti-inflammatory annexin A1 protein and tacrolimus immunosuppressant in the renal function of rats. Am J Nephrol. 2010;31:527–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Carlos C, Mendes G, Miquelin A, Luz M, da Silva C, van Rooijen N, et al. Macrophage depletion attenuates chronic Cyclosporine A nephrotoxicity. Transplantation. 2010;89:1362–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Myers B. Cyclosporine nephrotoxicity. Kidney Int. 1986;30:964–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Damazo A, Yona S, D’Acquisto F, Flower R, Oliani S, Perretti M. Critical protective role for annexin 1 gene expression in the endotoxemic murine microcirculation. Am J Pathol. 2005;166:1607–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Gil C, La M, Perretti M, Oliani S. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biol Int. 2006;30:338–44.PubMedCrossRefGoogle Scholar
  30. 30.
    D’Amico M, Di Filippo C, La M, Solito E, McLean P, Flower R, et al. Lipocortin 1 reduces myocardial ischemia-reperfusion injury by affecting local leukocyte recruitment. FASEB J. 2000;14:1867–9.PubMedGoogle Scholar
  31. 31.
    Elzinga L, Rosen S, Bennett W. Dissociation of glomerular filtration rate from tubulointerstitial fibrosis in experimental chronic cyclosporine nephropathy: role of sodium intake. J Am Soc Nephrol. 1993;4:214–21.PubMedGoogle Scholar
  32. 32.
    Yan P, Nanamori M, Sun M, Zhou C, Cheng N, Li N, et al. The immunosuppressant cyclosporin A antagonizes human formyl peptide receptor through inhibition of cognate ligand binding. J Immunol. 2006;177:7050–8.PubMedGoogle Scholar
  33. 33.
    Perretti M, Getting S, Solito E, Murphy P, Gao J. Involvement of the receptor for formylated peptides in the in vivo anti-migratory actions of annexin 1 and its mimetics. Am J Pathol. 2001;158:1969–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Sudo H, Hirata M, Kanada H, Yorozu K, Tashiro Y, Serizawa K, et al. Nicorandil improves glomerular injury in rats with mesangioproliferative glomerulonephritis via inhibition of proproliferative and profibrotic growth factors. J Pharmacol Sci. 2009;111:53–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Harendza S, Schneider A, Helmchen U, Stahl R. Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol Dial Transplant. 1999;14:2873–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Shihab F, Andoh T, Tanner A, Bennett W. Sodium depletion enhances fibrosis and the expression of TGF-beta1 and matrix proteins in experimental chronic cyclosporine nephropathy. Am J Kidney Dis. 1997;30:71–81.PubMedCrossRefGoogle Scholar
  37. 37.
    de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci USA. 2010;107:6340–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9:62–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Rhee H, Kim G, Huh J, Kim S, Na D. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur J Biochem. 2000;267:3220–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang Y, Aeberli D, Dacumos A, Xue J, Morand E. Annexin-1 regulates macrophage IL-6 and TNF via glucocorticoid-induced leucine zipper. J Immunol. 2009;183:1435–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Lim L, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J. 2007;21:968–75.PubMedCrossRefGoogle Scholar
  42. 42.
    McKanna J, Chuncharunee A, Munger K, Breyer J, Cohen S, Harris R. Localization of p35 (annexin I, lipocortin I) in normal adult rat kidney and during recovery from ischemia. J Cell Physiol. 1992;153:467–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Markoff A, Gerke V. Expression and functions of annexins in the kidney. Am J Physiol Renal Physiol. 2005;289:F949–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Leandro Pires Araujo
    • 1
  • Renata Ramos Truzzi
    • 2
  • Gloria Elisa Florido Mendes
    • 3
  • Marcus Alexandre Mendes Luz
    • 3
  • Emmanuel A. Burdmann
    • 3
    • 4
  • Sonia Maria Oliani
    • 1
    • 2
  1. 1.Post-Graduation Program in MorphologyFederal University of São Paulo (UNIFESP)São PauloBrazil
  2. 2.Department of BiologyInstituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP)São PauloBrazil
  3. 3.Division of NephrologySão José do Rio Preto Medical SchoolSão PauloBrazil
  4. 4.Division of NephrologyUniversity of São Paulo Medical SchoolSão PauloBrazil

Personalised recommendations