Inflammation Research

, Volume 60, Issue 9, pp 831–840 | Cite as

GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis

  • Makoto Ooi
  • Shin Nishiumi
  • Tomoo Yoshie
  • Yuuki Shiomi
  • Michitaka Kohashi
  • Ken Fukunaga
  • Shiro Nakamura
  • Takayuki Matsumoto
  • Naoya Hatano
  • Masakazu Shinohara
  • Yasuhiro Irino
  • Tadaomi Takenawa
  • Takeshi Azuma
  • Masaru Yoshida
Original Research Paper



The roles that amino acids play in immunity and inflammation are well defined, and the relationship between inflammatory bowel disease (IBD) and certain amino acids has recently attracted attention. In this study, the levels of amino acids and trichloroacetic acid (TCA) cycle-related molecules in the colonic tissues and sera of patients with ulcerative colitis (UC) were profiled by gas chromatography/mass spectrometry (GC/MS), with the aim of evaluating whether the clinical state induced by UC leads to variations in the amino acid profile.

Materials and methods

Colonic biopsy samples from 22 UC patients were used, as well as serum samples from UC patients (n = 13), Crohn’s disease (CD) patients (n = 21), and healthy volunteers (n = 17).


In the GC/MS-based profiling of amino acids and TCA cycle-related molecules, lower levels of 16 amino acids and 5 TCA cycle-related molecules were observed in the colonic lesion tissues of the UC patients, and the serum profiles of amino acids and TCA cycle-related molecules of the UC patients were different from those of the CD patients and healthy volunteers.


Our study raises the possibility that GC/MS-based profiling of amino acids and TCA cycle-related molecules is a useful early diagnostic tool for UC.


Ulcerative colitis Amino acid Metabolomics GC/MS 



Inflammatory bowel disease


Crohn’s disease


Ulcerative colitis


Elementary diet


Nuclear magnetic resonance analysis


Gas chromatography/mass spectrometry


Liquid chromatography/mass spectrometry


Capillary electrophoresis/mass spectrometry


Trichloroacetic acid


Clinical activity index


International Organization for the Study of Inflammatory Bowel Disease




Principal component analysis


Partial least squares discriminant analysis



Grant support: T.Y., T.A., and M.Y. were supported by a grant from the Global COE Program “Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. S.N. and T.A. were partially supported by a grant from the “Young researchers training program for promoting innovation” program of the Special Coordination Fund for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Y.S. was partially supported by a grant from the Education Program for Specialized Clinicians in the Support Program for Improving Graduate School Education from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank Kazuko Nagase (The Divisions of Lower Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine) for sample collection and preparation.


  1. 1.
    Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology. 2003;124:521–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Katz JA, Itoh J, Fiocchi C. Pathogenesis of inflammatory bowel disease. Curr Opin Gastroenterol. 1999;15:291–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Young Y, Abreu MT. Advances in the pathogenesis of inflammatory bowel disease. Curr Gastroenterol. 2006;8:470–7.CrossRefGoogle Scholar
  4. 4.
    Lochs H, Dejong C, Hammarqvist F, Hebuterne X, Leon-Sanz M, Schütz T, van Gemert W, van Gossum A, Valentini L, Lübke H, Bischoff S, Engelmann N, Thul P. ESPEN guidelines on enteral nutrition: gastroenterology. Clin Nutr. 2006;25:260–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Homan M, Baldassano RN, Mamula P. Managing complicated Crohn’s disease in children and adolescents. Nat Clin Pract Gastroenterol Hepatol. 2005;2:572–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson T, Macdonald S, Hill SM, Thomas A, Murphy MS. Treatment of active Crohn’s disease in children using partial enteral nutrition with liquid formula: a randomised controlled trial. Gut. 2006;55:356–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamamoto T, Nakahigashi M, Saniabadi AR. Review article: diet and inflammatory bowel disease-epidemiology and treatment. Aliment Pharmacol Ther. 2009;30:99–112.PubMedCrossRefGoogle Scholar
  8. 8.
    Matsui T, Sakurai T, Yao T. Nutritional therapy for Crohn’s disease in Japan. J Gastroenterol. 2005;40:25–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Ameho CK, Adjei AA, Harrison EK, Takeshita K, Morioka T, Arakaki Y, Ito E, Suzuki I, Kulkarni AD, Kawajiri A, Yamamoto S. Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumor necrosis factor alpha production in trinitrobenzene sulphonic acid induced colitis. Gut. 1997;41:487–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Israeli E, Berenshtein E, Wengrower D, Aptekar L, Kohen R, Zajicek G, Goldin E. Prophylactic administration of topical glutamine enhances the capability of the rat colon to resist inflammatory damage. Dig Dis Sci. 2004;49:1705–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Giriş M, Erbil Y, Doğru-Abbasoğlu S, Yanik BT, Aliş H, Olgaç V, Toker GA. The effect of heme oxygenase-1 induction by glutamine on TNBS-induced colitis. The effect of glutamine on TNBS colitis. Int J Colorectal Dis. 2007;22:591–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Vicario M, Amat C, Rivero M, Moretó M, Pelegrí C. Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis. J Nutr. 2007;137:1931–7.PubMedGoogle Scholar
  13. 13.
    Arndt H, Kullmann F, Reuss F, Schölmerich J, Palitzsch KD. Glutamine attenuates leukocyte endothelial cell adhesion in indomethacin-induced intestinal inflammation in the rat. JPEN J Parenter Enteral Nutr. 1999;23:12–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Basivireddy J, Jakob M, Balasubramanian KA. Oral glutamine attenuates indomethacin-induced small intestinal damage. Clin Sci. 2004;107:281–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Fillmann H, Kretzmann NA, San-Miguel B, Llesuy S, Marroni N, González-Gallego J, Tuñón MJ. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology. 2007;236:217–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsune I, Ikejima K, Hirose M, Yoshikawa M, Enomoto N, Takei Y, Sato N. Dietary glycine prevents chemical-induced experimental colitis in the rat. Gastroenterology. 2003;125:775–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Andou A, Hisamatsu T, Okamoto S, Chinen H, Kamada N, Kobayashi T, Hashimoto M, Okutsu T, Shimbo K, Takeda T, Matsumoto H, Sato A, Ohtsu H, Suzuki M, Hibi T. Dietary histidine ameliorates murine colitis by inhibition of proinflammatory cytokine production from macrophages. Gastroenterology. 2009;136:564–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Bjerrum JT, Nielsen OH, Wang YL, Olsen J. Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. Nat Clin Pract Gastroenterol Hepatol. 2008;5:332–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Gao H, Lu Q, Liu X, Cong H, Zhao L, Wang H, Lin D. Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci. 2009;100:782–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Marion JF, Rubin PH, Present DH. Differential diagnosis of chronic ulcerative colitis and Crohn’s disease. In: Kirsner JB, editor. Inflammatory bowel disease. 5th ed. Philadelphia: WB Saunders; 2000. p. 315–25.Google Scholar
  23. 23.
    Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ. 1989;298:82–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Myren J, Bouchier IA, Watkinson G, Softley A, Clamp SE, de Dombal FT. The O.M.G.E. multinational inflammatory bowel disease survey 1976–1982. A further report on 2,657 cases. Scand J Gastroenterol. 1984;19:1–27.Google Scholar
  25. 25.
    Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, Mizuno S, Sanuki T, Kutsumi H, Fukusaki E, Azuma T, Takenawa T, Yoshida M. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics. 2010;6:518–28.CrossRefGoogle Scholar
  26. 26.
    Matts SG. The value of rectal biopsy in the diagnosis of ulcerative colitis. Q J Med. 1961;30:393–407.PubMedGoogle Scholar
  27. 27.
    Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T, Kondo Y, Furumatsu K, Shiomi H, Kutsumi H, Azuma T, Yoshida M. A GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis 2011 (in press) doi: 10.1002/ibd.21616.
  28. 28.
    Fernández-Bañares F, Cabré E, González-Huix F, Gassull MA. Enteral nutrition as primary therapy in Crohn’s disease. Gut. 1994;35:55–9.CrossRefGoogle Scholar
  29. 29.
    Lennie TA, McCarthy DO, Keesey RE. Body energy status and the metabolic response to acute inflammation. Am J Physiol. 1995;269:1024–31.Google Scholar
  30. 30.
    Ling PR, Bistrian BR, Mendez B, Istfan NW. Effects of systemic infusions of endotoxin, tumor necrosis factor, and, interleukin-1 on glucose metabolism in the rat: relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism. 1994;43:279–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Jijon HB, Churchill T, Malfair D, Wessler A, Jewell LD, Parsons HG, Madsen KL. Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am J Physiol Gastointest Liver Physiol. 2000;279:641–51.Google Scholar
  32. 32.
    Cetinkaya A, Bulbuloglu E, Kantarceken B, Ciralik H, Kurutas EB, Buyukbese MA, Gumusalan Y. Effects of l-carnitine on oxidant/antioxidant status in acetic acid-induced colitis. Dig Dis Sci. 2006;51:488–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Edwards FC, Truelove SC. The course and prognosis of ulcerative colitis. Gut. 1964;5:1–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Goh J, O’Morain CA. Nutrition and adult inflammatory bowel disease. Aliment Pharmacol Ther. 2003;17:307–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Rizzello F, Gionchetti P, Venturi A, Campieri M. Review article: medical treatment of severe ulcerative colitis. Aliment Pharmacol Ther. 2003;17:7–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Coëffier M, Déchelotte P. The role of glutamine in intensive care unit patients: mechanisms of action and clinical outcome. Nutr Rev. 2005;63:65–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.PubMedGoogle Scholar
  38. 38.
    Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, Chakravarti S. Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis. 2007;13:807–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Olsen J, Gerds TA, Seidelin JB, Csillag C, Bjerrum JT, Troelsen JT, Nielsen OH. Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflamm Bowel Dis. 2009;15:1032–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Solem CA, Loftus EV Jr, Tremaine WJ, Harmsen WS, Zinsmeister AR, Sandborn WJ. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:707–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:661–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Lennard-Jones JE, Lockhart-Mummery HE, Morson BC. Clinical and pathological differentiation of Crohn’s disease and proctocolitis. Gastroenterology. 1968;54:1162–70.PubMedGoogle Scholar
  43. 43.
    Hoffenberg EJ, Fidanza S, Sauaia A. Serologic testing for inflammatory bowel disease. J Pediatr. 1999;134:447–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. 2001;96:730–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Dubinsky MC, Ofman JJ, Urman M, Targan SR, Seidman EG. Clinical utility of serodiagnostic testing in suspected pediatric inflammatory bowel disease. Am J Gastroenterol. 2001;96:758–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Sandborn WJ, Loftus EV Jr, Colombel JF, Fleming KA, Seibold F, Homburger HA, Sendid B, Chapman RW, Tremaine WJ, Kaul DK, Wallace J, Harmsen WS, Zinsmeister AR, Targan SR. Evaluation of serologic disease markers in a population-based cohort of patients with ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2001;7:192–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Makoto Ooi
    • 1
  • Shin Nishiumi
    • 1
  • Tomoo Yoshie
    • 1
  • Yuuki Shiomi
    • 1
  • Michitaka Kohashi
    • 1
  • Ken Fukunaga
    • 2
  • Shiro Nakamura
    • 2
  • Takayuki Matsumoto
    • 2
  • Naoya Hatano
    • 3
  • Masakazu Shinohara
    • 3
  • Yasuhiro Irino
    • 3
    • 4
  • Tadaomi Takenawa
    • 3
    • 4
  • Takeshi Azuma
    • 1
  • Masaru Yoshida
    • 1
    • 3
    • 5
  1. 1.Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
  2. 2.The Divisions of Lower Gastroenterology, Department of Internal MedicineHyogo College of MedicineNishinomiyaJapan
  3. 3.The Integrated Center for Mass SpectrometryKobe University Graduate School of MedicineKobeJapan
  4. 4.Division of Membrane Biology, Department of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobeJapan
  5. 5.Division of Metabolomics ResearchKobe University Graduate School of MedicineKobeJapan

Personalised recommendations