Inflammation Research

, Volume 60, Issue 3, pp 213–217 | Cite as

Immediate early inflammatory gene responses of human umbilical vein endothelial cells to hemorrhagic venom

  • Eric A. Albrecht
  • Saravana M. Dhanasekaran
  • Scott Tomlins
Short Communication


Objective and design

This report describes a focused immediate early gene response by human umbilical vein endothelial cells (HUVEC) to Echis carinatus snake venom.

Materials or subjects

Primary cultures of HUVEC were used to assess acute inflammatory gene responses.


Crude E. carinatus venom (2.5 µg/ml) was used to stimulate HUVEC.


HUVEC stimulated for 3 h with E. carinatus venom showed a focused response to the venom, with significant increases in metallothionein (e.g., MT1H, MT2A, MT1X) and cytochrome P450 (e.g., CYP1A1, CYP1B1) gene expressions compared to non-stimulated controls. Several other genes involved in cell growth and matrix attachment were repressed [e.g., thrombospondin 1 (THBS1), connective tissue growth factor (CTGF)].


These data suggest that acute vascular injury induced by hemorrhagic snake venom initiates an anti-oxidant response primarily involving metallothioneins.


Echis carinatus Inflammation Metallothionein Cytochrome P450 Endothelial 


  1. 1.
    Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease. Ann Intern Med. 1992;117(10):854–66.PubMedGoogle Scholar
  2. 2.
    Albrecht E, Chinnaiyan A, Sooryanarayana V, Kumar-Sinha C, Barrette T, Sarma V, Ward P. C5a-induced gene expression in human umbilical vein endothelial cells. Am J Pathol. 2004;164:849–59.CrossRefPubMedGoogle Scholar
  3. 3.
    Jaffe EA. Culture and identification of large vessel endothelial cells. Jaffe EA, editor. Biology of endothelial cells. The Hague: Martinus Nijhoff; 1973. p 13.Google Scholar
  4. 4.
    Cory AH, et al. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3:207–12.PubMedGoogle Scholar
  5. 5.
    Riss TL, Moravec RA. Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell 1992;Suppl 3:184a.Google Scholar
  6. 6.
    Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001;412 (6849):822–6.CrossRefGoogle Scholar
  7. 7.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, Mehra R, Laxman B, Cao X, Yu J, Kleer CG, Varambally S, Chinnaiyan AM. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Guo R, Ma H, Gao F, Zhong L, Ren J. Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol. 2009;47:228–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Kang J. Metallothionein redox cycle and function. Exp Biol Med. 2006;231:1459–67.Google Scholar
  11. 11.
    Reinecke F, Levanets O, Olivier Y, Louw R, Semete B, Grobler A, Hidalgo J, Smeitink J, Olckers A, Van Der Westhuize F. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem J. 2006;395:405–15.CrossRefPubMedGoogle Scholar
  12. 12.
    De Caterina R, Madonna R. Cytochromes CYP1A1 and CYP1B1: new pieces in the puzzle to understand the biomechanical paradigm of atherosclerosis. Cardiovasc Res. 2009;81:629–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Whitlock J. Induction of cytochrome P450 1A1. Annu Rev Pharmacol Toxicol. 1999;39:103–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 2002;30(10):e48.Google Scholar
  15. 15.
    Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods. 2001;25:443–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Hamer DH. Metallothionein. Annu Rev Biochem. 1986;55:913–51.PubMedGoogle Scholar
  17. 17.
    Borghesi L, Lynes M. Stress proteins as agents of immunological change: some lessons from metallothionein. Cell Stress Chaperones. 1996;1:99–108.CrossRefPubMedGoogle Scholar
  18. 18.
    Larochelle O, Stewart G, Moffatt P, Tremblay V, Seguin C. Characterization of the mouse metal-regulatory-element-binding proteins, metal element protein-1 and metal regulatory transcription factor-1. Biochem J. 2001;353:591–601.CrossRefPubMedGoogle Scholar
  19. 19.
    Andrews GK. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals. 2001;14:223–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Marget W, Krezel A. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med. 2007;13:371–5.Google Scholar
  21. 21.
    Pitt BR, Schwarz M, Woo ES, Yee E, Wasserloos K, Tran S, Weng WL, Mannix RJ, Watkins SA, Tyurina YY, Tyurin VA, Kagan V, Lazo J. Overexpression of metallothionein decreases sensitivity of pulmonary endothelial cells to oxidant injury. Am J Physiol. 1997;273:L856–65.PubMedGoogle Scholar
  22. 22.
    Sadhu C, Gedamu L. Metal specific posttranscriptional control of human metallothionein genes. Mol Cell Biol. 1989;9:5738–41.PubMedGoogle Scholar
  23. 23.
    Chen K, Chiou Y, Kao P, Lin S, Chang L. Taiwan cobra cardiotoxins induce apoptotic death of human neuroblastoma SK-N-SH cells mediated by reactive oxygen species generation and mitochondrial depolarization. Toxicon. 2008;51:624–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheng Y, Zhao Q, Liu X, Araki S, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C, p53 and ROS in the association of apoptosis and senescence in vascular endothelial cells. FEBS Lett. 2006;580:4911–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Suzuki K, Nakamura M, Hatanaka Y, Kayanoki Y, Tatsumi H, Taniguchi N. Induction of apoptotic cell death in human endothelial cells treated with snake venom: implication of intracellular reactive oxygen species and protective effects of glutathione and superoxide dismutases. J Biochem. 1997;122:1260–4.PubMedGoogle Scholar
  26. 26.
    Zhou X, Tan TC, Valiyaveettil S, Go ML, Kini RM, Velazquez-Campoy A, Sivaraman J. Structural characterization of myotoxic ecarpholin S from Echis carinatus venom. Biophys J. 2008;95:3366–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Jasti J, Paramasivam M, Srinivasan A, Singh TP. Structure of an acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) at 2.6 Å resolution reveals a novel intermolecular interaction. Acta Crystallogr D Biol Crystallogr. 2004;60:66–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsai I, Chen Y, Wang Y, Tu M, Tu A. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A(2) from the venoms of rattlesnakes and other pit vipers. Arch Biochem Biophys. 2001;394:236–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Lloret S, Moreno JJ. Oedema formation and degranulation of mast cells by phospholipase A2 purified from porcine pancreas and snake venoms. Toxicon. 1993;31:949–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Teixeiraa C, Landuccib E, Antunesb E, Chacurc M, Curyc Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon. 2003;42:947–62.CrossRefGoogle Scholar
  31. 31.
    Sasaki M, Ostanin D, Elrod JW, Oshima T, Jordan P, Itoh M, Joh T, Minagar A, Alexander JS. TNF-alpha-induced endothelial cell adhesion molecule expression is cytochrome P-450 monooxygenase dependent. Am J Physiol Cell Physiol. 2003;284(2):C422–8.PubMedGoogle Scholar
  32. 32.
    Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem. 1999;126:137–45.PubMedGoogle Scholar
  33. 33.
    Garside SA, Harlow CR, Hillier SG, Fraser HM, Thomas FH. Thrombospondin-1 inhibits angiogenesis and promotes follicular atresia in a novel in vitro angiogenesis assay. Endocrinology. 2010;151(3):1280–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics. 2002;79:547–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Asch AS, Barnwell J, Silverstein RL, Nachman RL. Isolation of the thrombospondin membrane receptor. J Clin Invest. 1987;79:1054–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997;138:707–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P, Sage EH. Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem. 1993;41:1467–77.PubMedGoogle Scholar
  38. 38.
    DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM, Polverini PJ. Thrombospondin 1 synthesis, and function in wound repair. Am J Pathol. 1996;148:1861–9.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Eric A. Albrecht
    • 1
  • Saravana M. Dhanasekaran
    • 2
  • Scott Tomlins
    • 2
  1. 1.Department of Biology and PhysicsKennesaw State UniversityKennesawUSA
  2. 2.Michigan Center for Translational PathologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations