Inflammation Research

, Volume 60, Issue 2, pp 137–142 | Cite as

Lack of association between plasma myeloperoxidase levels and angiographic severity of coronary artery disease in patients with acute coronary syndrome

  • Eraldo de Azevedo Lucio
  • Sandro C. Gonçalves
  • Jorge P. Ribeiro
  • Gilberto L. Nunes
  • Jarbas R. de Oliveira
  • Gustavo N. Araujo
  • Marco V. Wainstein
Original Research Paper



To evaluate the association between plasma myeloperoxidase (MPO) levels and angiographic severity of coronary atherosclerotic lesions in patients with non-ST elevation acute coronary syndrome (ACS).

Design and methods

This cross-sectional study examined high-risk ACS patients who underwent coronary angiography within 72 h of the onset of symptoms by measuring their plasma MPO levels after sheath insertion. Gensini score was used to evaluate angiographic severity of coronary artery disease.


A total of 48 patients were included in the study. Median MPO levels and Gensini scores were 6.9 ng/mL (4.4–73.5 ng/mL) and 10 (0–87.5), respectively. Spearman’s correlation coefficient did not show a significant association between MPO levels and Gensini scores (r s = 0.2; p = 0.177). There was no correlation between MPO and age, hypertension, diabetes, leukocyte count, troponin I, CK-MB ≥2 × ULN (upper limit of normal), TIMI risk score ≥4 and Gensini score in the multivariate analysis.


Our findings indicate that MPO expression is not associated with anatomical severity of coronary lesions in ACS.


Atherosclerosis Inflammation Biomarkers 


  1. 1.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.CrossRefPubMedGoogle Scholar
  2. 2.
    de Servi S, Mazzone A, Ricevuti G, et al. Expression of neutrophil and monocyte CD11B/CD18 adhesion molecules at different sites of the coronary tree in unstable angina pectoris. Am J Cardiol. 1996;78:564–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894–900.CrossRefPubMedGoogle Scholar
  5. 5.
    Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77:598–625.CrossRefPubMedGoogle Scholar
  7. 7.
    Podrez EA, Abu-Soud HM, Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med. 2000;28:1717–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Brennan ML, Hazen SL. Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr Opin Lipidol. 2003;14:353–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Hazen SL. Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol. 2004;24:1143–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Shabani F, McNeil J, Tippett L. The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCL) is suppressed by anti-rheumatic drugs. Free Radical Res. 1998;28:115–23.CrossRefGoogle Scholar
  11. 11.
    Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7): a mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Bio Chem. 2001;276:41279–87.CrossRefGoogle Scholar
  12. 12.
    Brennan ML, Penn MS, Van Lente S, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.CrossRefPubMedGoogle Scholar
  13. 13.
    Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108:1440–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Cavusoglu E, Ruwend C, Eng C, et al. Usefulness of baseline plasma myeloperoxidase levels as an independent predictor of myocardial infarction at two years in patients presenting with acute coronary syndrome. Am J Cardiol. 2007;99:1364–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Morrow DA, Sabatine MS, Brennan ML, et al. Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J 2008;29:1096–12.Google Scholar
  16. 16.
    Mocatta TJ, Pilbrow AP, Cameron VA, et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol. 2007;49:1993–2000.CrossRefPubMedGoogle Scholar
  17. 17.
    Khan SQ, Kelly D, Quinn P, Davies JE, Ng LL. Myeloperoxidase aids prognostication together with N-terminal pro-B-type natriuretic peptide in high-risk patients with acute ST elevation myocardial infarction. Heart. 2007;93:826–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Ndrepepa G, Braun S, Mehilli J, von Beckerath N, Schömig A, Kastrati A. Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes. Eur J Clin Invest. 2008;38:90–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Borges FK, Borges FK, Stella FS, et al. Serial analysis of C-reactive protein and myeloperoxidase in acute coronary syndrome. Clin Cardiol 2009;32:E58–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286:2136–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.PubMedGoogle Scholar
  22. 22.
    Tavora FR, Ripple M, Li L, Burke AP. Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord. 2009;9:27.CrossRefPubMedGoogle Scholar
  23. 23.
    Wainstein RV, Wainstein MV, Ribeiro JP, et al. Association between myeloperoxidase polymorphisms and its plasma levels with severity of coronary artery disease. Clin Biochem 2010;43:57–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Antman EM, Cohen M, Bernink PJLM, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284:835–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.CrossRefPubMedGoogle Scholar
  26. 26.
    Düzgünçinar O, Yavuz B, Hazirolan T, et al. Plasma myeloperoxidase is related to the severity of coronary artery disease. Acta Cardiol. 2008;63:147–52.CrossRefPubMedGoogle Scholar
  27. 27.
    Cavusoglu E, Chopra V, Gupta A, et al. Usefulness of the white blood cell count as a predictor of angiographic findings in an unselected population referred for coronary angiography. Am J Cardiol. 2006;98:1189–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Kubala L, Lu G, Baldus S, Berglund L, Eiserich JP. Plasma levels of myeloperoxidase are not elevated in patients with stable coronary artery disease. Clin Chim Acta. 2008;394:59–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Rudolph TK, Rudolph V, Baldus S. Contribution of myeloperoxidase to smoking-dependent vascular inflammation. Proc Am Thorac Soc. 2008;5:820–3.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldmann BU, Rudolph V, Rudolph TK, et al. Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radic Biol Med. 2009;47:79–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Fragmin and Fast Revascularization during InStability in Coronary artery disease Investigators. Invasive compared with non-invasive treatment in unstable coronary artery disease: FRISC II prospective randomised multicentre study. Lancet 1999;354:708–15.Google Scholar
  32. 32.
    Cannon CP, Weintraub WS, Demopoulas LA, et al. Comparison of early invasive and conservative strategies in patients with acute coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Eng J Med. 2001;344:1879–87.CrossRefGoogle Scholar
  33. 33.
    Wainstein MV, Bento da Silva D, Ribeiro JP. Coronary stent implantation may seal the inflammatory response in patients with acute coronary syndromes. Int J Cardiol. 2008;130:503–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Wainstein MV, Ribeiro JP. Mechanical plaque sealing in patients with acute coronary syndromes. Int J Cardiol. 2009;135:105–6.CrossRefGoogle Scholar
  35. 35.
    Wainstein MV, Ribeiro JP. What seals inflammation in patients with acute coronary syndromes. Int J Cardiol. 2009;135:108.CrossRefGoogle Scholar
  36. 36.
    Clausell N, Prado KF, Ribeiro JP. Increased plasma levels of soluble vascular cellular adhesion molecule 1 in patients with chest pain and angiographically normal coronary arteries. Int J Cardiol. 1999;68:275–80.CrossRefPubMedGoogle Scholar
  37. 37.
    Metha SR, Granger CB, Boden WE, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Eng J Med. 2009;360:2165–75.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Eraldo de Azevedo Lucio
    • 1
    • 3
  • Sandro C. Gonçalves
    • 1
  • Jorge P. Ribeiro
    • 1
    • 2
  • Gilberto L. Nunes
    • 1
    • 3
  • Jarbas R. de Oliveira
    • 4
  • Gustavo N. Araujo
    • 2
  • Marco V. Wainstein
    • 1
    • 2
  1. 1.Post-graduate Program in Cardiology, Faculty of MedicineFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Cardiology DivisionHospital de Clinicas de Porto AlegrePorto AlegreBrazil
  3. 3.Hospital São Francisco da Santa Casa de Porto AlegrePorto AlegreBrazil
  4. 4.Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations