Inflammation Research

, Volume 60, Issue 1, pp 37–45 | Cite as

Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation

  • Zheng Zhang
  • Weijie Li
  • Dongdong Sun
  • Li Zhao
  • Rongqing Zhang
  • Yabin Wang
  • Xuan Zhou
  • Haichang Wang
  • Feng Cao
Original Research Paper



This study was designed to detect the role of Toll-like receptor 4 (TLR4) signaling in the dysfunction of cardiac microvascular endothelial cells (CMECs) after hypoxia/reoxygenation (H/R).


The cell viability of CMECs was measured by MTT assay. The migration of CMECs was detected by cell scratch wound assay. The expressions of TLR4, nuclear factor-kappa B (NF-κB) and eNOS were analyzed by Western blot. Secretions of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were determined by NO detection kit and ELISA.


Lipopolysaccharide (LPS) incubation increased the expressions of TLR4, NF-κB, IL-6 and TNF-α in CMECs (P < 0.05 vs. control). The CMECs after H/R injury had impaired cell viability (P < 0.01 vs. control) and migration ability (P < 0.05 vs. control). Moreover, the expressions of TLR4, NF-κB, IL-6 and TNF-α were elevated after H/R in CMECs (P < 0.01 vs. control), while NO and the eNOS expression were significantly decreased. In contrast, administration of the TLR4-neutralizing antibody MTS510 prior to H/R injury down-regulated the expressions of IL-6 and TNF-α and attenuated the dysfunction of CMECs.


TLR4 and its signaling components can be activated by LPS and H/R in CMECs. Blocking the TLR4 signal pathway before H/R injury attenuates CMEC dysfunction.


Toll-like receptor 4 Cardiac microvascular endothelial cells Lipopolysaccharide Hypoxia/reoxygenation Apoptosis 



This study was supported by grants from the National Natural Science Foundation of China (NSFC, No. 30970845, 30770784) and Xijing Research Boosting Program (No. XJZT08Z04 XJZT07Z05).

Conflict of interest



  1. 1.
    Sohn HY, Krotz F, Gloe T, Keller M, Theisen K, Klauss V, et al. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc Res. 2003;58:638–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Sodha NR, Boodhwani M, Clements RT, Feng J, Xu SH, Sellke FW. Coronary microvascular dysfunction in the setting of chronic ischemia is independent of arginase activity. Microvasc Res. 2008;75:238–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Li J-M, Mullen AM, Shah AM. Phenotypic properties and characteristics of superoxide production by mouse coronary microvascular endothelial cells. J Mol Cell Cardiol. 2001;33:1119–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104:253–6.PubMedGoogle Scholar
  5. 5.
    Rossig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol. 2001;96:11–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Akira S. Toll-like receptor signaling. J Biol Chem. 2003;278:38105–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson GB, Brunn GJ, Platt JL. Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol. 2003;23:15.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, Kohmoto J, et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation. 2007;84:1279–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, et al. Cytokines link toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg. 2008;85:1678–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci. 2009;14:2553–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296:H1–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Oyama J Jr, Blais C, Liu X, Pu M, Kobzik L, Kelly RA, et al. Reduced myocardial ischemia-reperfusion injury in Toll-like receptor 4-deficient mice. Circulation. 2004;109:784–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim SC, Ghanem A, Stapel H, Tiemann K, Knuefermann P, Hoeft A, et al. Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol. 2007;7:5.CrossRefPubMedGoogle Scholar
  14. 14.
    Stapel H, Kim SC, Osterkamp S, Knuefermann P, Hoeft A, Meyer R, et al. Toll-like receptor 4 modulates myocardial ischaemia-reperfusion injury: role of matrix metalloproteinases. Eur J Heart Fail. 2006;8:665–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, et al. Inhibition of toll-like receptor 4 with eritoran attenuates myocardial ischemia–reperfusion injury. Circulation. 2006;114:I270–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Curtiss LK, Tobias PS. Emerging role of toll-like receptors in atherosclerosis. J Lipid Res. 2009;50(Suppl):S340–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Erickson B, Sperber K, Frishman WH. Toll-like receptors: new therapeutic targets for the treatment of atherosclerosis, acute coronary syndromes, and myocardial failure. Cardiol Rev. 2008;16:273–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Riad A, Jager S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–61.PubMedGoogle Scholar
  19. 19.
    Satoh M, Shimoda Y, Maesawa C, Akatsu T, Ishikawa Y, Minami Y, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol. 2006;109:226–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Methe H, Kim JO, Kofler S, Weis M, Nabauer M, Koglin J. Expansion of circulating toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation. 2005;111:2654–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol. 1993;264:H639–52.PubMedGoogle Scholar
  22. 22.
    Wei L, Yin Z, Yuan Y, Hwang A, Lee A, Sun D, et al. A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res. 2010;80:158–65.Google Scholar
  23. 23.
    Hu Q, Ziegelstein RC. Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation. 2000;102:2541–7.PubMedGoogle Scholar
  24. 24.
    Yin T, Ma X, Zhao L, Cheng K, Wang H. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res. 2008;18:792–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang B, Graham L, Dikalov S, Mason RP, Falck JR, Liao JK, et al. Overexpression of cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol. 2001;60:310–20.PubMedGoogle Scholar
  26. 26.
    Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, et al. A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis. 2010;15:488–98.CrossRefPubMedGoogle Scholar
  27. 27.
    Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol. 2001;166:2018–24.PubMedGoogle Scholar
  28. 28.
    Ichikawa H, Flores S, Kvietys PR, Wolf RE, Yoshikawa T, Granger DN, et al. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circ Res. 1997;81:922–31.PubMedGoogle Scholar
  29. 29.
    Lum H, Barr DA, Shaffer JR, Gordon RJ, Ezrin AM, Malik AB. Reoxygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. Circ Res. 1992;70:991–8.PubMedGoogle Scholar
  30. 30.
    Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2007;4:444–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell. 1995;80:573–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt C, Peng B, Li Z, Sclabas GM, Fujioka S, Niu J, et al. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol Cell. 2003;12:1287–300.CrossRefPubMedGoogle Scholar
  33. 33.
    Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999;104:271–80.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Zheng Zhang
    • 1
  • Weijie Li
    • 1
  • Dongdong Sun
    • 1
  • Li Zhao
    • 1
  • Rongqing Zhang
    • 1
  • Yabin Wang
    • 1
  • Xuan Zhou
    • 1
  • Haichang Wang
    • 1
  • Feng Cao
    • 1
  1. 1.Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi’anChina

Personalised recommendations