A class of functional equations associated with almost periodic functions


In this paper we will get a class of functional equations involving a countable set of terms, summed by the well known Bochner–Fejér summation procedure, which are closely associated with the set of almost periodic functions. We will show that the zeros of a prefixed almost periodic function determine analytic solutions of such a functional equation associated with it, and we will obtain other solutions which are analytic or meromorphic on a certain domain.

This is a preview of subscription content, log in to check access.


  1. 1.

    Almira, J.M., Abu-Helaiel, Kh.F.: On solutions of \(f(x)+f(a_1x)+\ldots +f(a_Nx)=0\) and related equations. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 9, 3–17 (2011)

  2. 2.

    Ash, R.B.: Complex Variables. Academic Press, London (1971)

    Google Scholar 

  3. 3.

    Besicovitch, A.S.: Almost Periodic Functions. Dover, New York (1954)

    Google Scholar 

  4. 4.

    Bohr, H.: Zur Theorie der fastperiodischen Funktionen. (German) III. Dirichletentwicklung analytischer Funktionen. Acta Math. 47(3), 237–281 (1926)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bohr, H.: Almost Periodic Functions. Chelsea, New York (1951)

    Google Scholar 

  6. 6.

    Corduneanu, C.: Almost Periodic Functions. Interscience Publishers, New York (1968)

    Google Scholar 

  7. 7.

    Favorov, SYu.: Zeros of holomorphic almost-periodic functions, zeros of holomorphic almost periodic functions. J. Anal. Math. 84, 51–66 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jessen, B.: Some aspects of the theory of almost periodic functions. In: Proceedings of International Congress Mathematicians Amsterdam, vol. 1, pp. 304–351. North-Holland (1954)

  9. 9.

    Mas, A., Sepulcre, J.M.: The projections of the zeros of exponential polynomials with complex frequencies. Colloq. Math. 158(1), 91–102 (2019)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Mora, G.: A note on the functional equation \(F(z)+F(2z)+\cdots +F(nz)=0\). J. Math. Anal. Appl. 340, 466–475 (2008)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Mora, G., Sepulcre, J.M.: The zeros of Riemann zeta partial sums yield solutions to \(f(x)+f(2x)+ \cdots +f(nx)=0\). Mediterr. J. Math. 10(3), 1221–1232 (2013)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sepulcre, J.M., Vidal, T.: On the analytic solutions of the functional equations \(w_1f(a_1z)+w_2f(a_2z)+\cdots +w_nf(a_nz)=0\). Mediterr. J. Math. 12, 667–678 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Yang, S.J., Wu, H.Z., Zhang, Q.B.: Generalization of Vandermonde determinants. Linear Algebra Appl. 336, 201–204 (2001)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. M. Sepulcre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. M. Sepulcre was supported by PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sepulcre, J.M., Vidal, T. A class of functional equations associated with almost periodic functions. Aequat. Math. (2020). https://doi.org/10.1007/s00010-020-00732-3

Download citation


  • Almost periodic functions
  • Dirichlet series
  • Bochner–Fejér summation method
  • Zeros of analytic functions
  • Functional equations

Mathematics Subject Classification

  • 42A75
  • 30D05
  • 39B32
  • 39Bxx
  • 30Axx