Skip to main content
Log in

Some results for conjugate equations

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper we consider a class of conjugate equations, which generalizes de Rham’s functional equations. We give sufficient conditions for the existence and uniqueness of solutions under two different series of assumptions. We consider regularity of solutions. In our framework, two iterated function systems are associated with a series of conjugate equations. We state local regularity by using the invariant measures of the two iterated function systems with a common probability vector. We give several examples, especially an example such that infinitely many solutions exists, and a new class of fractal functions on the two-dimensional standard Sierpiński gasket which are not harmonic functions or fractal interpolation functions. We also consider a certain kind of stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaart, P.: Differentiability and Hölder spectra of a class of self-affine functions. Preprint, arXiv:1707.07376

  2. Ambrosio, L., Di Marino, S.: Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266, 4150–4188 (2014)

    Article  MathSciNet  Google Scholar 

  3. Arbieto, A., Junqueira, A., Santiago, B.: On weakly hyperbolic iterated function systems. Bull. Braz. Math. Soc. (N.S.) 48, 111–140 (2017)

    Article  MathSciNet  Google Scholar 

  4. Barany, B., Kiss, G., Kolossvary, I.: Pointwise regularity of parametrized affine zipper fractal curves. Nonlinearity 31, 1705–1733 (2018)

    Article  MathSciNet  Google Scholar 

  5. Browder, F.: On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30, 27–35 (1968)

    Article  MathSciNet  Google Scholar 

  6. Celik, D., Kocak, S., Ozdemir, Y.: Fractal interpolation on the Sierpiński gasket. J. Math. Anal. Appl. 337, 343–347 (2008)

    Article  MathSciNet  Google Scholar 

  7. Denjoy, A.: Sur une fonction réelle de Minkowski. J. Math. Pures Appl. 17, 105–151 (1938)

    MATH  Google Scholar 

  8. Falconer, K.: Fractal Geometry, 3rd edn. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  9. Fan, A.H.: Ergodicity, unidimensionality and multifractality of self-similar measures. Kyushu J. Math. 50, 541–574 (1996)

    Article  MathSciNet  Google Scholar 

  10. Fan, A.H., Lau, K.-S.: Iterated function system and Ruelle operator. J. Math. Anal. Appl. 231, 319–344 (1999)

    Article  MathSciNet  Google Scholar 

  11. Georgescu, F., Miculescu, R., Mihail, A.: Invariant measures of Markov operators associated to iterated function systems consisting of phi-max-contractions with probabilities. Preprint, arXiv:1705.04875

  12. Girgensohn, R., Kairies, H.-H., Zhang, W.: Regular and irregular solutions of a system of functional equations. Aequationes Math. 72, 27–40 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hata, M.: On the structure of self-similar sets. Jpn. J. Appl. Math. 2, 381–414 (1985)

    Article  MathSciNet  Google Scholar 

  14. Hata, M., Yamaguti, M.: The Takagi function and its generalization. Jpn. J. Appl. Math. 1, 183–199 (1984)

    Article  MathSciNet  Google Scholar 

  15. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  16. Jachymski, J.R.: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327–2335 (1997)

    Article  MathSciNet  Google Scholar 

  17. Jordan, T., Sahlsten, T.: Fourier transforms of Gibbs measures for the Gauss map. Math. Ann. 364, 983–1023 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kesseböhmer, M., Stratmann, B.O.: Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128, 2663–2686 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  20. Mantica, G., Totik, V.: Regularity of Minkowski’s question mark measure, its inverse and a class of IFS invariant measures. J. Lond. Math. Soc. https://doi.org/10.1112/jlms.12197

    Article  MathSciNet  Google Scholar 

  21. Matkowski, J.: Integrable Solutions of Functional Equations. Dissertationes Mathematicae (Rozprawy Matematyczne) 127 (1975)

  22. Minkowski, H.: Zur Geometrie der Zahlen, Verhandlungen des III, pp. 164–173. Internationalen Mathematiker-Kongresses, Heidelberg (1904)

    Google Scholar 

  23. Miranda Jr., M.: Functions of bounded variation on “good” metric spaces (9). J. Math. Pures Appl. 82, 975–1004 (2003)

    Article  MathSciNet  Google Scholar 

  24. Mutamoto, K., Sekiguchi, T.: Directed networks and self-similar systems. Preprint

  25. Okamura, K.: Singularity results for functional equations driven by linear fractional transformations. J. Theoret. Probab. 27, 1316–1328 (2014)

    Article  MathSciNet  Google Scholar 

  26. Okamura, K.: On the range of self-interacting random walks on an integer interval. Tsukuba J. Math. 38, 123–135 (2014)

    Article  MathSciNet  Google Scholar 

  27. Okamura, K.: On regularity for de Rham’s functional equations. Aequationes Math. 90, 1071–1085 (2016)

    Article  MathSciNet  Google Scholar 

  28. Okamura, K.: Self-similar measures for iterated function systems driven by weak contractions. Proc. Jpn. Acad. Ser. A Math. Sci 94, 31–35 (2018)

    Article  MathSciNet  Google Scholar 

  29. de Rham, G.: Sur quelques courbes définies par des équations fonctionalles. Univ. e Politec. Torino. Rend. Sem. Mat. 16, 101–113 (1957)

    Google Scholar 

  30. Ri, S.-G., Ruan, H.-J.: Some properties of fractal interpolation functions on Sierpiński gasket. J. Math. Anal. Appl. 380, 313–322 (2011)

    Article  MathSciNet  Google Scholar 

  31. Ruan, H.-J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18(1), 119–125 (2010)

    Article  MathSciNet  Google Scholar 

  32. Salem, R.: On some singular monotonic functions which are strictly increasing. Trans. Am. Math. Soc. 53, 427–439 (1943)

    Article  MathSciNet  Google Scholar 

  33. Serpa, C., Buescu, J.: Piecewise expanding maps and conjugacy equations. In: Nonlinear Maps and Their Applications, vol. 112, pp. 193–202. Springer, New York (2015)

    MATH  Google Scholar 

  34. Serpa, C., Buescu, J.: Explicitly defined fractal interpolation functions with variable parameters. Chaos Solitons Fractals 75, 76–83 (2015)

    Article  MathSciNet  Google Scholar 

  35. Serpa, C., Buescu, J.: Non-uniqueness and exotic solutions of conjugacy equations. J. Differ. Equ. Appl. 21, 1147–1162 (2015)

    Article  MathSciNet  Google Scholar 

  36. Serpa, C., Buescu, J.: Constructive solutions for systems of iterative functional equations. Constr. Approx. 45, 273–299 (2017)

    Article  MathSciNet  Google Scholar 

  37. Shi, Y.-G., Yilei, T.: On conjugacies between asymmetric Bernoulli shifts. J. Math. Anal. Appl. 434, 209–221 (2016)

    Article  MathSciNet  Google Scholar 

  38. Sumi, H.: Random dynamics of polynomials and devil’s-staircase-like functions in the complex plane. Appl. Math. Comput. 187, 489–500 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Viader, P., Paradis, J., Bibiloni, L.: A new light on Minkowski’s\(?(x)\) function. J. Number Theory 73, 212–227 (1998)

    Article  MathSciNet  Google Scholar 

  40. Zdun, M.C.: On conjugacy of some systems of functions. Aequationes Math. 61, 239–254 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was supported by JSPS KAKENHI Grant-in-Aid for JSPS Fellows (16J04213) and for Research activity Start-up (18H05830). This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Okamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, K. Some results for conjugate equations. Aequat. Math. 93, 1051–1084 (2019). https://doi.org/10.1007/s00010-018-0633-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-018-0633-9

Mathematics Subject Classification

Keywords

Navigation