Aequationes mathematicae

, Volume 92, Issue 3, pp 577–580 | Cite as

An elementary proof for the majorization principle for Wright-convex functions

  • Mihai Monea
  • Dan Ştefan Marinescu


We give another elementary proof for the majorization principle for Wright-convex functions. This inequality is due to Ng.


Wright-convex functions Majorization inequality 

Mathematics Subject Classification

Primary 26A51 Secondary 39B62 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inoan, D., Raşa, I.: A majorization inequality for Wright-convex functions revisited. Aequ. Math. 83, 209–214 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ng, C.T.: Functions generating Schur-convex sums. Int. Ser. Num. Math. 80, 433–438 (1985)MathSciNetGoogle Scholar
  4. 4.
    Pec̆arić, J., Raşa, I.: Inequalities for Wright-convex functions. Ann. Univ Marie Curie-Sklodowska Lub. Pol. L(18), 186–190 (1996)Google Scholar
  5. 5.
    Trif, T.: On Popoviciu inequality. In: Conference of Analysis, Functional Equations, Approximation and Convexity (In Honour of Professor Elena Popoviciu, Cluj Napoca, October 15–16), pp. 338–342 (1999)Google Scholar
  6. 6.
    Vâjîitu, M., Vâjîitu, V.: O inegalitate privind funcţiile concave. Gaz. Mat. 94(6), 212–214 (1989)Google Scholar
  7. 7.
    Wright, E.M.: An inequality for convex functions. Am. Math. Mon. 61, 620–622 (1954)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National College “Decebal”DevaRomania
  2. 2.National College “Iancu de Hunedoara”HunedoaraRomania

Personalised recommendations