Advertisement

Aequationes mathematicae

, Volume 90, Issue 6, pp 1129–1145 | Cite as

On Hukuhara’s differentiable iteration semigroups of linear set-valued functions

  • Masoumeh Aghajani
  • Kourosh Nourouzi
Article
  • 58 Downloads

Abstract

In this paper, we investigate the uniform convergence of continuous linear set-valued functions on compact sets. We also consider conditions under which the family of continuous linear extensions of a differential iteration semigroup of continuous linear set-valued functions is a differentiable iteration semigroup. In particular, since the cones and normed spaces are not supposed to be complete our main results generalize some recent results on Hukuhara’s derivative of set-valued functions.

Keywords

Hukuhara’s derivative Iterations Linear set-valued functions Cauchy problem for a set-valued differential equation Riemann integral for set-valued functions 

Mathematics Subject Classification

Primary 46G05 Secondary 39B12 54C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aghajani M., Nourouzi K.: On the regular cosine family of linear correspondences. Aequationes Math. 8(33), 215–221 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aliprantis C.D., Border K.C.: Infinite Dimentional Analysis, A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)MATHGoogle Scholar
  3. 3.
    Dinghas A.: Zum Minkowskischen Integralbegriff abgeschlossener Mengen. Math. Zeitschrift 66, 173–188 (1956)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hukuhara M.: Intégration des applications measurables dont la valeur est un compact convexe. Funcial. Ekvac. 10, 205–223 (1967)MathSciNetMATHGoogle Scholar
  5. 5.
    Piszczek M.: Integral representations of convex and concave set-valued functions. Demonstr. Math. 35, 727–742 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Rädström H.: An embedding theorem for space of convex sets. Proc. Am. Math. Soc. 3, 165–169 (1952)CrossRefGoogle Scholar
  7. 7.
    Smajdor A.: Hukuhara’s derivative and concave iteration semigroups of linear set-valued functions. J. Appl. Anal. 8(2), 297–305 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Smajdor A.: Hukuhara’s differentiable iteration semigroups of linear set-valued functions. Ann. Polon. Math. 83(1), 1–10 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Smajdor A.: On a multivalued differential problem. Int. J. Bifurc. Chaos 13(7), 1877–1882 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Smajdor A.: On regular multivalued cosine families, European Conference on Iteration Theory (Muszyna-Zlockie, 1998). Ann. Math. Sil. 13, 271–280 (1999)MathSciNetGoogle Scholar
  11. 11.
    Smajdor W.: Superadditive set-valued functions and Banach-Steinhause Theorem. Rad. Mat. 3, 203–214 (1987)MathSciNetMATHGoogle Scholar
  12. 12.
    Szczawińska J.: On some families of set-valued functions. Aequationes Math. 78, 157–166 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Faculty of MathematicsK. N. Toosi University of TechnologyTehranIran

Personalised recommendations