Aequationes mathematicae

, Volume 90, Issue 5, pp 879–903

# On the covering index of convex bodies

• Károly Bezdek
• Muhammad A. Khan
Article

## Abstract

Covering a convex body by its homothets is a classical notion in discrete geometry that has resulted in a number of interesting and long-standing problems. Swanepoel introduced the covering parameter of a convex body as a means of quantifying its covering properties. In this paper, we introduce two relatives of the covering parameter called covering index and weak covering index, which upper bound well-studied quantities like the illumination number, the illumination parameter and the covering parameter of a convex body. Intuitively, the two indices measure how well a convex body can be covered by a relatively small number of homothets having the same relatively small homothety ratio. We show that the covering index is a lower semicontinuous functional on the Banach-Mazur space of convex bodies. We further show that the affine d-cubes minimize the covering index in any dimension d, while circular disks maximize it in the plane. Furthermore, the covering index satisfies a nice compatibility with the operations of direct vector sum and vector sum. In fact, we obtain an exact formula for the covering index of a direct vector sum of convex bodies that works in infinitely many instances. This together with a minimization property can be used to determine the covering index of infinitely many convex bodies. As the name suggests, the weak covering index loses some of the important properties of the covering index. Finally, we obtain upper bounds on the covering and weak covering index.

52C17 52C15

## Keywords

Convex body Hadwiger Covering Conjecture Boltyanski-Hadwiger Illumination Conjecture Covering index Covering parameter Illumination number Illumination parameter

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Belousov J.F.: Theorems on covering of plane figures. Ukrain. Geom. Sb. 20, 10–17 (1977)
2. 2.
Bezdek K.: . Beiträge Algebra Geom. 14, 7–13 (1983)
3. 3.
Bezdek K.: Research problem 46. Period. Math. Hungar. 24, 119–121 (1992)
4. 4.
Bezdek K., Langi Z., Naszódi M., Papez P.: Ball-polyhedra. Discrete Comput. Geom. 38(2), 201–230 (2007)
5. 5.
Bezdek, K.: Classical topics in discrete geometry, CMS Books in Mathematics. Springer, New York (2010)Google Scholar
6. 6.
Boltyanski V.: The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. AN SSSR 76, 77–84 (1960)Google Scholar
7. 7.
Boltyanski V., Martini H., Soltan P.S.: Excursions into combinatorial geometry. Springer, New York (1997)
8. 8.
Boltyanski V., Martini H.: Illumination of direct vector sums of convex bodies. Stud. Sci. Math. Hung. 44(3), 367–376 (2007)
9. 9.
Brass P., Moser W., Pach J.: Research problems in discrete geometry. Springer, US (2005)
10. 10.
Fejes Tóth, G.: Thinnest covering of a circle with eight, nine, or ten congruent circles. In: Combinatorial and computational geometry, Math. Sci. Res. INst. Publ., vol. 52, pp. 361–376. Cambridge Univ. Press, Cambridge (2005)Google Scholar
11. 11.
Fudali S.: Homotetyczne pokrycie trójkata. Matematyka 35, 94–109 (1982)Google Scholar
12. 12.
Gohberg, I. Ts., Markus, A.S.: A certain problem about the covering of convex sets with homothetic ones. Izvestiya Moldavskogo Filiala Akademii Nauk SSSR (In Russian). 10(76), 87–90 (1960)Google Scholar
13. 13.
Hadwiger H.: Ungelöste Probleme Nr. 20. Elem. der Math. 12, 121 (1957)
14. 14.
Hadwiger H.: Ungelöste Probleme Nr. 38. Elem. der Math. 15, 130–131 (1960)
15. 15.
Kiss Gy., de Wet P.O.: Notes on the illumination parameters of convex polytopes. Contrib. Discrete Math. 7(1), 58–67 (2009)
16. 16.
Lassak M.: Covering a plane convex body by four homothetical copies with the smallest positive ratio. Geom. Dedicata 21, 157–167 (1986)
17. 17.
Lassak, M.: Covering plane convex bodies by smaller homothetical copies. In: Intuitive Geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, vol. 48, pp. 331–337. North-Holland, Amsterdam (1987)Google Scholar
18. 18.
Lassak M.: Covering the boundary of a convex set by tiles. Proc. Am. Math. Soc. 104(1), 269–272 (1988)
19. 19.
Levi F.W.: Ein geometrisches Überdeckungsproblem. Arch. Math. 5, 476–478 (1954)
20. 20.
Levi F.W.: Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns. Arch. Math. 6(5), 369–370 (1955)
21. 21.
Macbeath A.M.: A compactness theorem for affine equivalence-classes of convex regions. Can. J. Math. 3, 54–61 (1951)
22. 22.
Martini H., Soltan V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57, 121–152 (1999)
23. 23.
MathOverFlow, Covering a unit ball with balls half the radius. http://mathoverflow.net/q/98007 (version: 2012-08-05)
24. 24.
Rogers C.A.: A note on coverings. Mathematika. 4, 1–6 (1957)
25. 25.
Rogers C.A., Shephard G.C.: The difference body of a convex body. Arch. Math. 8, 220–233 (1957)
26. 26.
Rogers C.A.: Covering a sphere with spheres. Mathematika 10, 157–164 (1963)
27. 27.
Rogers C.A., Zong C.: Covering convex bodies by translates of convex bodies. Mathematika 44, 215–218 (1997)
28. 28.
Schneider, R.: Convex bodies: the Brun-Minkowski Theory, 2nd edn. Encyclopedia of mathematics and its applications, vol. 151. Cambridge University Press, Cambridge (2014)Google Scholar
29. 29.
Swanepoel K.J.: Quantitative illumination of convex bodies and vertex degrees of geometric Steiner minimal trees. Mathematika 52, 47–52 (2005)
30. 30.
Verger-Gaugry J.-L.: Covering a ball with smaller equal balls in $${{\mathbb{R}}^{n}}$$. Discrete Comput. Geom. 33, 143–155 (2005)
31. 31.
Zong C.: A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 53(9), 2551–2560 (2010)