Skip to main content
Log in

Best constant in stability of some positive linear operators

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We prove that the kernels of Bernstein, Stancu and Kantorovich operators are proximinal sets, therefore the infimum of Hyers–Ulam constants is also a Hyers–Ulam constant for the above mentioned operators. Moreover, we investigate what happens when the supremum norm is replaced by the L 1-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altomare F., Campiti M.: Korovkin-type Approximation Theory and its Applications. W. de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  2. Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brzdek J., Jung S.M.: A note on stability of an operator linear equation of the second order. Abstr. Appl. Anal. ID602713, 15 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Brzdek J., Rassias Th.M.: Functional Equations in Mathematical Analysis. Springer, Berlin (2011)

    MATH  Google Scholar 

  5. Ciepliński K.: Applications of fixed point theorems to the Hyers–Ulam stability of functional equation—a survey. Ann. Funct. Anal. 3(1), 151–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Forti G.L.: Hyers–Ulam stability of functional equations in several variables. Aequ. Math. 50, 143–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hatori O., Kobayasi K., Miura T., Takagi H., Takahasi S.E.: On the best constant of Hyers–Ulam stability. J. Nonlinear Convex Anal. 5, 387–393 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Hirasawa G., Miura T.: Hyers–Ulam stability of a closed operator in a Hilbert space. Bull. Korean Math. Soc. 43, 107–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hyers D.H., Isac G., Rassias Th.M.: Stability of Functional Equation in Several Variables. Birkhäuser, Basel (1998)

    Book  MATH  Google Scholar 

  11. Jung S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optim. Appl., vol. 48. Springer, New York (2011)

    Book  Google Scholar 

  12. Miura T., Miyajima S., Takahasi S.E.: A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miura T., Miyajima M., Takahasi S.E.: Hyers–Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 258, 90–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moslehian M.S.: Ternary derivations, stability and physical aspects. Acta Appl. Math. 100(2), 187–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moslehian M.S., Sadeghi G.: Perturbation of closed range operators. Turkish J. Math. 33, 143–149 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Popa D., Raşa I.: On the Hyers–Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381, 530–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Popa D., Raşa I.: On the best constant in Hyers–Ulam stability of some positive linear operators. J. Math. Anal. Appl. 412, 103–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Popa D., Raşa I.: Hyers–Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math. Comput. 219, 1562–1568 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Popa D., Raşa I.: On the stability of some classical operators from approximation theory. Expo Math. 31, 205–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rassias Th.M.: On the stability of the linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MATH  Google Scholar 

  21. Stancu D.D.: Asupra unei generalizări a polinoamelor lui Bernstein. Studia Univ. Babeş-Bolyai 14, 31–45 (1969)

    MathSciNet  Google Scholar 

  22. Takagi H., Miura T., Takahasi S.E.: Essential norms and stability constants of weighted composition operators on C(X). Bull. Korean Math. Soc. 40, 583–591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ulam S.M.: A Collections of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Popa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, D., Raşa, I. Best constant in stability of some positive linear operators. Aequat. Math. 90, 719–726 (2016). https://doi.org/10.1007/s00010-016-0405-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-016-0405-3

Mathematics Subject Classification

Keywords

Navigation