Advertisement

Aequationes mathematicae

, Volume 83, Issue 1–2, pp 97–116 | Cite as

Formulas on hyperbolic volume

  • Á. G. Horváth
Article

Abstract

This paper collects some important formulas on hyperbolic volume. To determine concrete values of the volume function of polyhedra is a very hard question requiring the knowledge of various methods. Our goal is to give (in Sect. 3.3, Theorem 1) a new non-elementary integral on the volume of the orthoscheme (to obtain it without the Lobachevsky-Schläfli differential formula), using edge-lengths as the only parameters.

Mathematics Subject Classification (2000)

51F10 52B10 

Keywords

Coordinate systems formulas on hyperbolic volume Lobachevsky integral orthoscheme János Bolyai 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolyai, J.: Appendix. In: Bolyai, F. (ed.) Tentamen written. Marosvásárhely, IK (1832)Google Scholar
  2. 2.
    Bonola R.: Non-euclidean geometry. Dover Publication, USA (1955)zbMATHGoogle Scholar
  3. 3.
    Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstarter Krmmung. DVW, Berlin (1980) (Birkhäuser, Basel-Boston-Stuttgart, 1981)Google Scholar
  4. 4.
    Cho Y., Kim H.: On the volume formula for hyperbolic tetrahedra. Discret. Comput. Geom. 22, 347–366 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Derevnin D.A., Mednykh A.D.: A formula for the volume of a hyperbolic tetrahedon. Uspekhi Mat. Nauk 60(2), 159–160 (2005)MathSciNetGoogle Scholar
  6. 6.
    Kellerhals R.: On the volume of hyperbolic polyhedra. Math. Ann. 285, 541–569 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lobachevsky, N.I.: Zwei Geometrische Abhandlungen. B.G. Teubner, Leipzig (1898) (reprinted by Johnson Reprint Corp., New York and London, 1972)Google Scholar
  8. 8.
    Milnor J.W.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. (N.S.) 6(1), 9–24 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Mohanty Y.: The Regge symmetry is a scissors congruence in hyperbolic space. Algebraic Geom. Topol. 3, 1–31 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Molnár, E.: Lobachevsky and the non-euclidean geometry. (in Hungarian). In: Bolyai emlékkönyv Bolyai János születésének 200. évfordulójára, pp. 221–241, Vince Kiadó, Hungary (2004)Google Scholar
  11. 11.
    Molnár E.: Projective metrics and hyperbolic volume. Annales Univ. Sci. Budapest Sect. Math. 32, 127–157 (1989)zbMATHGoogle Scholar
  12. 12.
    Murakami J., Yano M.: On the volume of hyperbolic and spherical tetrahedron. Commun. Anal. Geom. 13(2), 379–400 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Vinberg E.B., Shvartsman O.V.: Spaces of constant curvature in geometry II. Springer, Berlin (1993)Google Scholar
  14. 14.
    Weszely T.: The mathematical works of Bolyai (in Hungarian). Kriterion, Bukarest (1981)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of GeometryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations