Aequationes mathematicae

, Volume 82, Issue 3, pp 233–246 | Cite as

Converse Jensen–Steffensen inequality



In this paper we prove a converse to the Jensen–Steffensen inequality. We also present two inequalities complementary to the Jensen–Steffensen inequality. The equality case conditions are thoroughly investigated.

Mathematics Subject Classification (2000)



Jensen–Steffensen inequality Jensen–Mercer inequality Jensen’s inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich S., Klaričić Bakula M., Matić M., Pečarić J.: A variant of Jensen–Steffensen’s inequality and quasi-arithmetic means. J. Math. Anal. Appl. 307(1), 370–386 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barić J., Matković A.: Bounds for the normalized Jensen–Mercer functional. J. Math. Inequal. 3(4), 529–541 (2009)MathSciNetMATHGoogle Scholar
  3. 3.
    Ivelić, S., Klaričić Bakula, M., Pečarić, J.: Cauchy type means related to the converse Jensen–Steffensen inequality. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. (2011, in press)Google Scholar
  4. 4.
    Matković A., Pečarić J.: A variant of Jensen’s inequality for convex functions of several variables. J. Math. Inequal. 1(1), 45–51 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Mercer, A.McD.: A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 4(4), 2 pp., Article 73 (2003) (electronic)Google Scholar
  6. 6.
    Pečarić J.E., Proschan F., Tong Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering, vol. 187. Academic Press, Inc., Boston (1992)Google Scholar
  7. 7.
    Simić S.: On a global upper bound for Jensen’s inequality. J. Math. Anal. Appl. 343(1), 414–419 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • S. Ivelić
    • 1
  • M. Klaričić Bakula
    • 2
  • J. Pečarić
    • 3
  1. 1.Faculty of Civil Engineering and ArchitectureUniversity of SplitSplitCroatia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of SplitSplitCroatia
  3. 3.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations