Abstract
Some arithmetic properties of the generalized Lucas sequences are studied, extending a number of recent results obtained for Fibonacci, Lucas, Pell, and Pell–Lucas sequences. These properties are then applied to investigate certain notions of Fibonacci, Lucas, Pell, and Pell–Lucas pseudoprimality, for which we formulate some conjectures.
This is a preview of subscription content, access via your institution.
References
- 1.
Andreescu, T., Andrica, D.: Number Theory. Structures, Examples, and Problems. Birkhäuser, Boston (2009)
- 2.
Andreescu, T., Andrica, D.: Quadratic Diophantine Equations. Developments in Mathematics. Springer, Berlin (2015)
- 3.
Andrejic, V.: On Fibonacci powers. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 17, 38–44 (2006)
- 4.
Andrica, D., Bagdasar, O.: Recurrent Sequences: Key Results. Applications and Problems. Springer, Berlin (2020)
- 5.
Andrica, D., Crişan, V., Al-Thukair, F.: On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci. 24(1), 9–15 (2018)
- 6.
Borges, A., Catarino, P., Aires, A.P., Vasco, P., Campos, H.: Two-by-two matrices involving k-Fibonacci and k-Lucas sequences. Appl. Math. Sci. 8(34), 1659–1666 (2014)
- 7.
Bruckman, P.S.: On the infinitude of Lucas pseudoprimes. Fibonacci Q. 32(2), 153–154 (1994)
- 8.
Catarino, P., Vasco, P.: On dual \(k\)-Pell quaternions and octonions. Mediterr. J. Math. 14, 75 (2017)
- 9.
Catarino, P.: A note involving two-by-two matrices of the \(k\)-Pell and \(k\)-Pell–Lucas sequences. Int. Math. Forum 8(32), 1561–1568 (2013)
- 10.
Catarino, P., Vasco, P., Borges, A., Campos, H., Aires, A.P.: Sums, products and identities involving \(k\)-Fibonacci and \(k\)-Lucas sequences. JP J. Algebra Number Theory Appl. 32(1), 63–77 (2014)
- 11.
Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comput. 66(5), 433–449 (1997)
- 12.
Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd edn. Springer, New York (2005)
- 13.
Falcon, S., Plaza, A.: On the Fibonacci \(k\)-numbers. Chaos Soliton Fract. 32(5), 1615–1624 (2007)
- 14.
Falcon, S.: On the Lucas triangle and its relationship with the \(k\)-Lucas numbers. J. Math. Comput. Sci. 2, 425–434 (2012)
- 15.
Falcon, S.: Relationships between some \(k\)-Fibonacci sequences. Appl. Math. 5, 2226–2234 (2014)
- 16.
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)
- 17.
Halton, J.: Some properties associated with square Fibonacci numbers. Fibonacci Q. 5(4), 347–354 (1967)
- 18.
Hosoya, H.: What can mathematical chemistry contribute to the development of mathematics? Int. J. Philos. Chem. 19(1), 87–105 (2013)
- 19.
Jancić, M.: On linear recurrence equations arising from compositions of positive integers. J. Int. Seq. 18, Article 15.4.7 (2015)
- 20.
Jaroma, J.H.: Note on the Lucas–Lehmer test. Ir. Math. Soc. Bull. 54, 63–72 (2004)
- 21.
Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4, 502–506 (1953)
- 22.
Kiss, P., Phong, B.M., Lieuwens, E.: On Lucas pseudoprimes which are products of s primes. In: Philippou, A.N., Bergum, G.E., Horadam, A.F. (eds.) Fibonacci Numbers and Their Applications, vol. 1, pp. 131–139. Reidel, Dordrecht (1986)
- 23.
Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. Addison Wesley, Boston (2003)
- 24.
Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, Hoboken (2001)
- 25.
Lehmer, D. H.: An extended theory of Lucas’ functions. Ann. Math. 2nd Ser. 2(3), 419–448 (1930)
- 26.
Lehmer, E.: On the infinitude of Fibonacci pseudoprimes. Fibonacci Q. 2(3), 229–230 (1964)
- 27.
Noonea, C.J., Torrilhonb, M., Mitsosa, A.: Heliostat field optimization: a new computationally efficient model and biomimetic layout. Sol. Energy 86(2), 792–803 (2012)
- 28.
OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences. http://oeis.org. Accessed 15 Nov 2019
- 29.
Rabago, J.F.T.: On \(k\)-Fibonacci numbers with applications to continued fractions. Proc. ICMAME 2015 J. Phys. Conf. Ser. 693, 012005 (2016)
- 30.
Rotkiewicz, A.: Lucas and Frobenius pseudoprimes. Ann. Math. Sil. 17, 17–39 (2003)
- 31.
Schuster, S., Fitchner, M., Sasso, S.: Use of Fibonacci numbers in lipidomics—enumerating various classes of fatty acids. Nat. Sci. Rep. 7, 39821 (2017)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Andrica, D., Bagdasar, O. On Some New Arithmetic Properties of the Generalized Lucas Sequences. Mediterr. J. Math. 18, 47 (2021). https://doi.org/10.1007/s00009-020-01653-w
Received:
Revised:
Accepted:
Published:
Keywords
- Generalized Lucas sequences
- Pell sequence
- Pell–Lucas sequence
- Legendre symbol
- Pseudoprimality
Mathematics Subject Classification
- 11A51
- 11B39
- 11B50