m-Quasi-Einstein Metrics Satisfying Certain Conditions on the Potential Vector Field


In this paper we study Riemannian manifolds \((M^n, g)\) admitting an m-quasi-Einstein metric with V as its potential vector field. We derive an integral formula for compact m-quasi-Einstein manifolds and prove that the vector field V vanishes under certain integral inequality. Next, we prove that if the metrically equivalent 1-form \(V^{\flat }\) associated with the potential vector field is a harmonic 1-form, then V is an infinitesimal harmonic transformation. Moreover, if M is compact then it is Einstein. Some more results were obtained when (i) V generates an infinitesimal harmonic transformation, (ii) V is a conformal vector field.

This is a preview of subscription content, log in to check access.


  1. 1.

    Besse, A.L.: Einstein Manifolds. Springer, Berlin (2007)

    Google Scholar 

  2. 2.

    Cao, H.-D.: Recent progress on ricci solitons. arXiv:0908.2006 (arXiv preprint ) (2009)

  3. 3.

    Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-einstein metrics. Differ. Geometry Appl. 29(1), 93–100 (2011)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de Probabilités XIX 1983(84), pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  5. 5.

    Kim, D.-S., Kim, Y.: Compact einstein warped product spaces with nonpositive scalar curvature. Proc. Am. Math. Soc. 131(8), 2573–2576 (2003)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Barros, A., Ribeiro, E.: Characterizations and integral formulae for generalized m-quasi-einstein metrics. Bull. Braz. Math. Soc. N. Ser. 45(2), 325–341 (2014)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Catino, G.: Generalized quasi-einstein manifolds with harmonic weyl tensor. Math. Z. 271(3–4), 751–756 (2012)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Zejun, H., Li, D., Jing, X.: On generalized m-quasi-einstein manifolds with constant scalar curvature. J. Math. Anal. Appl. 432(2), 733–743 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Petersen, P., Wylie, W.: Rigidity of gradient ricci solitons. Pac. J. Math. 241(2), 329–345 (2009)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Nurowski, P., Randall, M.: Generalized ricci solitons. J. Geometr. Anal. 26(2), 1280–1345 (2016)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Limoncu, M.: Modifications of the ricci tensor and applications. Arch. Math. 95(2), 191–199 (2010)

    MathSciNet  Google Scholar 

  12. 12.

    Barros, A., Ribeiro, E.: Integral formulae on quasi-einstein manifolds and applications. Glasgow Math. J. 54(1), 213–223 (2012)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Qian, Z.: Estimates for weighted volumes and applications. Q. J. Math. 48(2), 235–242 (1997)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Myers, S.B., et al.: Connections between differential geometry and topology. I. Simply connected surfaces. Duke Math. J. 1(3), 376–391 (1935)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Ghosh, A.: m-quasi-einstein metric and contact geometry. Revi. Real Acad. Cie. Exactas Fís. Nat. Ser. A Mat. 113(3), 2587–2600 (2019)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Barros, A.A., Gomes, J.N.V.: Triviality of compact m-quasi-einstein manifolds. Results Math. 71(1–2), 241–250 (2017)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Glob. Anal. Geom. 24(3), 291–299 (2003)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Nouhaud, O.: Transformations infinitesimales harmoniques. CR Acad. Paris Ser. A, 274, 573–576 (1972)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Sergey Evgenevich Stepanov and Vera Nikolaevna Shelepova: A note on ricci solitons. Math. Notes 86(3–4), 447 (2009)

    MathSciNet  Google Scholar 

  20. 20.

    Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differe. Geometry Appl. 20(3), 367–378 (2004)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Ghosh, A.: Certain infinitesimal transformations on contact metric manifolds. J. Geom. 106(1), 137–152 (2015)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Yano, K.: Integral Formulas in Riemannian Geometry, vol. 1. M. Dekker, New York (1970)

    Google Scholar 

  23. 23.

    Wei, G., Wylie, W.: Comparison geometry for the bakry-emery ricci tensor. J. Differ. Geometry 83(2), 377–405 (2009)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Abdênago, B., Ernani Jr., R., Silva Filho, J.: Uniqueness of quasi-einstein metrics on 3-dimensional homogeneous manifolds. Differ. Geometry Appl. 35, 60–73 (2014)

    MathSciNet  Google Scholar 

  25. 25.

    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Springer, Berlin (2010)

    Google Scholar 

  26. 26.

    Olszak, Z.: On almost cosymplectic manifolds. Kodai Math. J. 4(2), 239–250 (1981)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Cappelletti-Montano, B., De Nicola, A., Yudin, I.: A survey on cosymplectic geometry. Rev. Math. Phys. 25(10), 1343002 (2013)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Kenmotsu, K.: A class of almost contact riemannian manifolds. Tohoku Math. J. Sec. Ser. 24(1), 93–103 (1972)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Perelman, Grisha: The entropy formula for the ricci flow and its geometric applications. arXiv:math/0211159 (arXiv preprint) (2002)

  30. 30.

    Hamilton, R.: The formations of singularities in the ricci flow. Surv. Differ. Geometry 2(1), 7–136 (1993)

    MathSciNet  Google Scholar 

  31. 31.

    Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geometry Appl. 3(4), 301–307 (1993)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Yano, K., Kon, M.: Structures on Manifolds. World Scientific, Singapore (1984)

    Google Scholar 

  33. 33.

    Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Berlin (2012)

    Google Scholar 

Download references


The author is grateful to the reviewers for their valuable comments and suggestions.

Author information



Corresponding author

Correspondence to Amalendu Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A. m-Quasi-Einstein Metrics Satisfying Certain Conditions on the Potential Vector Field. Mediterr. J. Math. 17, 115 (2020). https://doi.org/10.1007/s00009-020-01558-8

Download citation


  • Ricci soliton
  • m-quasi-Einstein metric
  • infinitesimal harmonic transformation
  • conformal vector field

Mathematics Subject Classification

  • 53C25
  • 53C20
  • 53D10