Upper Bounds on the First Eigenvalue for the p-Laplacian


In this paper, we establish gradient estimates for positive solutions to the following equation with respect to the p-Laplacian

$$\begin{aligned} \Delta _{p}u=-\lambda |u|^{p-2}u \end{aligned}$$

with \(p>1\) on a given complete Riemannian manifold. Consequently, we derive upper bound estimates of the first nontrivial eigenvalue of the p-Laplacian.

This is a preview of subscription content, log in to check access.


  1. 1.

    Calabi, E.: An extension of E. Hopfs maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1958)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Cheng, S.Y.: Eigenvalue comparison theorems and its geometric application. Math. Z. 143, 289–297 (1975)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333–354 (1975)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Evans, L.C.: A new proof of local \(C^{1,\alpha }\)-regularity for solutions of certain degenerate elliptic PDE. J. Diff. Eq. 45, 356–373 (1982)

    Article  Google Scholar 

  5. 5.

    Kotschwar, B., Ni, L.: Gradient estimate for \(p\)-harmonic functions, \(1/H\) flow and an entropy formula. Ann. Sci. Éc. Norm. Supér. 42, 1–36 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84, 1295–1361 (2005)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Matei, A.-M.: First eigenvalue for the \(p\)-Laplace operator. Nonlinear Anal. 39, 1051–1068 (2000)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Rossi, J.D., Teixeira, E.V., Urbano, J.M.: Optimal regularity at the free boundary for the infinity obstacle problem. Interfaces Free Bound. 17, 381–398 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta. Math. 111, 247–302 (1964)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equ. 51, 126–150 (1984)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Uhlenbeck, K.: Regularity for a class of nonlinear elliptic systems. Acfa Math. 138, 219–240 (1977)

    Article  Google Scholar 

  13. 13.

    Valtorta, D.: Sharp estimate on the first eigenvalue of the \(p\)-Laplacian. Nonlinear Anal. 75, 4974–4994 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Wang, Y.Z., Li, H.Q.: Lower bound estimates for the first eigenvalue of the weighted \(p\)-Laplacian on smooth metric measure spaces. Differ. Geom. Appl. 45, 23–42 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Wang, L.-F.: Eigenvalue estimate of the \(p\)-Laplace operator. Lobachevskii J. Math. 30, 235–242 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Wang, L.-F.: The upper bound of the \(L_\mu ^2\) spectrum. Ann. Glob. Anal. Geom. 37, 393–402 (2010)

    Article  Google Scholar 

  17. 17.

    Wang, L.-F.: Eigenvalue estimate for the weighted \(p\)-Laplacian. Ann. Mat. Pura Appl. 191, 539–550 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang, L.-F., Zhu, Y.P.: A sharp gradient estimate for the weighted p-Laplacian. Appl. Math. J. Chinese Univ. Ser. B 27, 462–474 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wu, J.-Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature. J. Math. Anal. Appl. 361, 10–18 (2010)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Zhang, H.C.: Lower bounds for the first eigenvalue of the \(p\)-Laplace operator on compact manifolds with nonnegative Ricci curvature. Adv. Geom. 7, 145–155 (2007)

    MathSciNet  Article  Google Scholar 

Download references


The authors thank the referee for helpful suggestions which made the paper more readable.

Author information



Corresponding author

Correspondence to Zhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by NSFC (Nos. 11971153, 11671121).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, G. Upper Bounds on the First Eigenvalue for the p-Laplacian. Mediterr. J. Math. 17, 112 (2020). https://doi.org/10.1007/s00009-020-01549-9

Download citation


  • Eigenvalue
  • p-Laplacian
  • gradient estimates

Mathematics Subject Classification

  • 58J05
  • 35J92