Fig\(\grave{\hbox {a}}\)–Talamanca–Herz–Orlicz Algebras and Convoluters of Orlicz Spaces


Let G be a locally compact group and \((\Phi , \Psi )\) be a complementary pair of N-functions. In this paper, the Fig\(\grave{\hbox {a}}\)–Talamanca–Herz algebras and the space of p-pseudomeasures on G are extended to Orlicz spaces. Indeed, the Banach algebra of \(\Phi \)-pseudomeasures \({\mathop {\mathrm{PM}}}_{\Phi }(G)\) and the Fig\(\grave{\hbox {a}}\)–Talamanca–Herz–Orlicz algebras \({\mathop {\mathrm{A}}}_{\Phi }(G)\) are defined. Then, it is shown that \({\mathop {\mathrm{A}}}_{\Phi }(G)^*={\mathop {\mathrm{PM}}}_{\Psi }(G)\). Furthermore, we characterize \(\mathop {\mathrm{Cv}}_{\Phi }(G)\), the space of \(\Phi \)-convoluters, in terms of right translation invariant operators on \(M^{\Phi }(G)\). Then when G is amenable, we show that \(\mathop {\mathrm{Cv}}_{\Phi }(G)\), is equal to \(\mathop {\mathrm{PM}}_{\Phi }(G)\), a generalization of the classical p-version. Finally, we study \(B_{\Phi }(G)\), the space of pointwise multipliers of \(\mathop {\mathrm{A}}_{\Phi }(G)\) when G is amenable.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aghababa, H.P., Akbarbaglu, I., Maghsoudi, S.: The space of multipliers and convolutors of Orlicz spaces on a locally compact group. Stud. Math. 219(1), 1–16 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Dales, H.G.: Banach Algebras and Automatic Continuity. Clarendon Press, Oxford (2000)

    Google Scholar 

  3. 3.

    Derighetti, A.: Convolution operators on groups. Lecture Notes of the Unione Matematica Italiana, vol. 11. Springer, Heidelberg (2011)

  4. 4.

    Eymard, P.: Lalg‘ebre de Fourier dun groupe localement compact. Bull. Soc. Math. Fr. 92, 181–236 (1964)

    Article  Google Scholar 

  5. 5.

    Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    Google Scholar 

  6. 6.

    Herz, C.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble) 23, 91–123 (1973)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Pier, J.P.: Amenable Locally Compact Groups. Wiley, New York (1984)

    Google Scholar 

  8. 8.

    Rao, M.M.: Convolutions of vector fields-I. Math. Z. 174, 63–79 (1980)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Rao, M.M.: Convolutions of vector fields-II: Random walk models. Nonlinear Anal. 47, 3599–3615 (2001)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Rao, M.M.: Convolutions of vector fields, III: Amenability and spectral properties, Real and stochastic analysis, Trends Math, pp. 375–401. Birkhäuser, Boston (2004)

    Google Scholar 

  11. 11.

    Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Marcel Dekker, Inc, New York (1991)

    Google Scholar 

  12. 12.

    Rao, M.M., Ren, Z.D.: Applications of Orlicz spaces. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  13. 13.

    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  14. 14.

    Runde, V.: Lectures on amenability, vol. 1774 of Lecture Notes in Mathematics. Springer, Berlin (2002)

Download references


The authors are very grateful to the anonymous referee(s) for a very careful reading of the paper, several invaluable remarks and pointing out some misprints in an earlier version of the paper.

Author information



Corresponding author

Correspondence to Ibrahim Akbarbaglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aghababa, H.P., Akbarbaglu, I. Fig\(\grave{\hbox {a}}\)–Talamanca–Herz–Orlicz Algebras and Convoluters of Orlicz Spaces. Mediterr. J. Math. 17, 106 (2020).

Download citation


  • Orlicz spaces
  • Young functions
  • Pseudomeasures
  • Locally compact groups
  • Fig\(\grave{\hbox {a}}\)–Talamanca–Herz algebras
  • Representations

Mathematics Subject Classification

  • Primary 43A15
  • 43A22
  • Secondary: 46E30
  • 47L10