1 Introduction

The “doubled” tangent bundle \(T\,\oplus \, T^*\) over m-dimensional manifolds (m-manifolds) is full of interest because it has the natural inner product, and the Courant bracket, see [1]. Besides, generalized complex structures are defined on \(T\,\oplus \, T^*\), generalizing both (usual) complex and symplectic structures, see e.g. [3, 4].

In Sect. 2, the description from [2] of all \(\mathcal {M} f_m\)-natural bilinear operators

$$\begin{aligned}A:(\mathcal {X}(M)\,\oplus \,\Omega ^1(M))\times (\mathcal {X}(M)\,\oplus \,\Omega ^1(M))\rightarrow \mathcal {X}(M)\,\oplus \,\Omega ^1(M),\end{aligned}$$

transforming pairs of couples of vector fields and 1-forms on m-manifolds M into couples of vector fields and 1-forms on M will be shortly cited. The most important example of such \(\mathcal {M} f_m\)-natural bilinear operator A is given by the Courant bracket \([-,-]^C\), see Example 2.2. This Courant bracket was used in [1] to define the concept of Dirac structures being hybrid of both symplectic and Poisson structures.

In Sect. 2 we also deduce that the “trivial” Lie algebroid \((TM\,\oplus \, T^*M,0,0)\) is the only \(\mathcal {M} f_m\)-natural Lie algebroid \((EM, [[-,-]],a)\) with \(EM:=TM\,\oplus \, T^*M\).

In Sect. 3, using essentially the results from [2], if \(m\ge 3\) and \(p\ge 3\), we find all \(\mathcal {M} f_m\)-natural operators A sending p-forms \(H\in \Omega ^p(M)\) on m-manifolds M into bilinear maps

$$\begin{aligned}A_H:({\mathcal {X}}(M)\,\oplus \,\Omega ^1(M))\times ({\mathcal {X}}(M)\,\oplus \,\Omega ^1(M))\rightarrow {\mathcal {X}}(M)\,\oplus \,\Omega ^1(M).\end{aligned}$$

The most important example of such A is given by the H-twisted Courant bracket \([-,-]_H\) for all 3-forms H on m-manifolds M, see Example 3.2. Properties of \([-,-]_H\) (as the Leibniz rule for closed 3-forms H) were used in [7, 8] to define the concept of exact Courant algebroid.

In Sect. 4, we observe that if \(m\ge 3\) and \(p\ge 3\), then any (similar as above) \(\mathcal {M} f_m\)-natural operator A which is defined only for closed p-forms H can be extended uniquely to the one A which is defined for all p-forms H.

In Sect. 5, if \(p=3\) we extract all \(\mathcal {M} f_m\)-natural operators A as above satisfying the Leibniz rule

$$\begin{aligned}A_H(\rho _1,A_H(\rho _2,\rho _3))=A_H(A_H(\rho _1,\rho _2),\rho _3)+A_H(\rho _2,A_H(\rho _1,\rho _3)),\end{aligned}$$

for any closed \(H\in \Omega ^3(M)\), \(\rho _1,\rho _2,\rho _3\in {\mathcal {X}}(M)\,\oplus \,\Omega ^1(M)\) and \(M\in obj(\mathcal {M} f_m)\).

From now on, \((x^i)\) (\(i=1,...,m\)) denote the usual coordinates on \(\mathbf {R}^m\) and \(\partial _i={\partial \over \partial x^i}\) are the canonical vector fields on \(\mathbf {R}^m\).

All manifolds considered in this paper are assumed to be finite dimensional second countable Hausdorff without boundary and smooth (of class \(\mathcal {C}^\infty \)). Maps between manifolds are assumed to be smooth (of class \(\mathcal {C}^\infty \))

2 The Natural Bilinear Operators Similar to the Courant Bracket

The general concept of natural operators can be found in the fundamental monograph [5]. In the paper, we need two particular cases of natural operators presented in Definitions 2.1 (below) and 3.1 (in the next section).

Let \(\mathcal {M} f_m\) be the category of m-dimensional \(\mathcal {C}^\infty \) manifolds as objects and their immersions of class \(\mathcal {C}^\infty \) as morphisms (\(\mathcal {M} f_m\)-maps).

Definition 2.1

A natural (called also \(\mathcal {M} f_m\)-natural) operator A sending pairs of couples of vector fields and 1-forms on m-manifolds M into couples of vector fields and 1-forms on M is a \(\mathcal {M} f_m\)-invariant family of operators (functions)

$$\begin{aligned} A:(\mathcal {X}(M)\,\oplus \,\Omega ^1(M))\times (\mathcal {X}(M)\,\oplus \,\Omega ^1(M))\rightarrow \mathcal {X}(M)\,\oplus \,\Omega ^1(M),\end{aligned}$$

for all m-manifolds M, where \(\mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) is the vector space of couples \((X,\omega )\) of vector fields X on M and 1-forms \(\omega \) on M. Such \(\mathcal {M} f_m\)-natural operator A is called bilinear if A is bilinear (i.e., \(A(\rho ^1,-)\) and \(A(-,\rho ^2)\) are linear (over the field \(\mathbf {R}\) of real numbers) functions \(\mathcal {X}(M)\,\oplus \,\Omega ^1(M)\rightarrow \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) for any fixed \(\rho ^1,\rho ^2\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\)) for any m-manifold M. Such \(\mathcal {M} f_m\)-natural operator A is called skew-symmetric if A is skew-symmetric for any m-manifold M.

The \(\mathcal {M} f_m\)-invariance of A means that if \((X^1\,\oplus \,\omega ^1, X^2\,\oplus \,\omega ^2)\) and \((\overline{X}^1\,\oplus \,\overline{\omega }^1,\overline{X}^2\,\oplus \,\overline{\omega }^2)\) are \(\varphi \)-related by an \(\mathcal {M} f_m\)-map \(\varphi :M\rightarrow \overline{M}\) (i.e., \(\overline{X}^i\circ \varphi =T\varphi \circ X^i\) and \(\overline{\omega }^i\circ \varphi =T^*\varphi \circ \omega ^i\) for \(i=1,2\)), then so are \(A(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)\) and \(A(\overline{X}^1\,\oplus \,\overline{\omega }^1,\overline{X}^2\,\oplus \,\overline{\omega }^2)\).

The most important example of such \(\mathcal {M} f_m\)-natural bilinear operator A is given by the (skew-symmetric) Courant bracket \([-,-]^C\) for any m-manifold M.

Example 2.2

On the vector bundle \(TM\,\oplus \, T^*M\) there exist canonical symmetric and skew-symmetric pairings

$$\begin{aligned} \left<X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2\right>_\pm ={1\over 2}(i_{X^2}\omega ^1\pm i_{X^1}\omega ^2) \end{aligned}$$

for any \(X^1\,\oplus \,\omega ^1, X^2\,\oplus \,\omega ^2\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\), where i is the interior derivative. Further, the (skew-symmetric) Courant bracket is given by

$$\begin{aligned}&{[}X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2]^C\\&\quad =[X^1,X^2]\,\oplus \,\left( \mathcal {L}_{X^1}\omega ^2-\mathcal {L}_{X^2}\omega ^1+\mathrm {d}\left<X^1\,\oplus \,\omega ^1,X^2\,\oplus \, \omega ^2\right>_-\right) \end{aligned}$$

for any \(X^1\,\oplus \,\omega ^1, X^2\,\oplus \,\omega ^2\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\), where \([-,-]\) is the usual bracket on vector fields, \(\mathcal {L}\) is the Lie derivative and d is the exterior derivative.

Theorem 2.3

[2]. If \(m\ge 2\), any \(\mathcal {M} f_m\)-natural bilinear operator A in the sense of Definition 2.1 is of the form

$$\begin{aligned}&A (\rho ^1,\rho ^2) \\ {}&\quad = a[X^1,X^2]\,\oplus \, \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-\right) \end{aligned}$$

for (uniquely determined by A) real numbers \(a, b_1,b_2,b_3,b_4\), where \(\rho ^i=X^i\,\oplus \,\omega ^i\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) for \(i=1,2\) are arbitrary, and where \(\left<-,-\right>_+\) and \(\left<-,-\right>_-\) are as in Example 2.2.

Corollary 2.4

[2]. If \(m\ge 2\), any \(\mathcal {M} f_m\)-natural skew-symmetric bilinear operator A in the sense of Definition 2.1 is of the form

$$\begin{aligned}&A(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)\\ {}&\quad =a[X^1,X^2]\,\oplus \, (b(\mathcal {L}_{X^1}\omega ^2-\mathcal {L}_{X^2}\omega ^1)+c\mathrm {d}\left<X^2\,\oplus \,\omega ^1,X^1\,\oplus \,\omega ^2\right>_-) \end{aligned}$$

for (uniquely determined by A) real numbers abc.

Roughly speaking, Corollary 2.4 says that if \(m\ge 2\), then any \(\mathcal {M} f_m\)-natural skew-symmetric bilinear operator A in the sense of Definition 2.1 coincides with the one given by Courant bracket \([-,-]^C\) up to three real constants.

Definition 2.5

A \(\mathcal {M} f_m\)-natural bilinear operator A in the sense of Definition 2.1 satisfies the Leibniz rule if

$$\begin{aligned} A(\rho _1,A(\rho _2,\rho _3))=A(A(\rho _1,\rho _2),\rho _3)+A(\rho _2,A(\rho _1,\rho _3)) \end{aligned}$$

for all \(\rho _1,\rho _2,\rho _3\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) and all m-manifolds M.

Of course, in the case of skew-symmetric bilinear A the Leibniz rule is equivalent to the Jacobi identity \(\sum _{{\mathrm {cycl}}(\rho _1,\rho _2,\rho _3)}A(\rho _1,A(A(\rho _2,\rho _3))=0\).

Example 2.6

The (not skew-symmetric) Courant bracket given by

$$\begin{aligned}&[X^1\oplus \omega ^1,X^2\oplus \omega ^2]_0\\&\quad : =[X^1,X^2]\,\oplus \,(\mathcal {L}_{X^1}\omega ^2-i_{X^2}\mathrm {d}\omega ^1), \end{aligned}$$

where \(X^i\,\oplus \,\omega ^i \in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\), satisfies the Leibniz rule, see [7, 8].

The Courant bracket \([-,-]^C\) from Example 2.2 does not satisfy the Leibniz rule.

Theorem 2.7

[2]. If \(m\ge 2\), any \(\mathcal {M} f_m\)-natural bilinear operator A in the sense of Definition 2.1 satisfying the Leibniz rule is one of the following ones:

$$\begin{aligned} A^{\left<1,a\right>}(\rho ^1,\rho ^2)= & {} a[X^1,X^2]\,\oplus \, 0, \\ A^{\left<2,a\right>}(\rho ^1,\rho ^2)= & {} a[X^1,X^2]\,\oplus \, (a(\mathcal {L}_{X^1}\omega ^2-\mathcal {L} _{X^2}\omega ^1)),\\ A^{\left<3,a\right>}(\rho ^1,\rho ^2)= & {} a[X^1,X^2]\,\oplus \, a\mathcal {L}_{X^1}\omega ^2, \\ A^{\left<4,a,0\right>}(\rho ^1,\rho ^2)= & {} a[X^1,X^2]\,\oplus \, (a(\mathcal {L}_{X^1}\omega ^2-i_{X^2}\mathrm{d}\omega ^1)), \end{aligned}$$

where a is an arbitrary real number, and where \(\rho ^1=X^1\,\oplus \,\omega ^1\) and \(\rho ^2=X^2\,\oplus \,\omega ^2\).

Corollary 2.8

If \(m\ge 2\), the Courant bracket \([-,-]_0\) from Example 2.6 for m-manifolds M is the unique \(\mathcal {M}f_m\)-natural bilinear operator A in the sense of Definition 2.1 satisfying the conditions:

(A1):

\(A(\rho _1, A(\rho _2,\rho _3))=A(A(\rho _1,\rho _2),\rho _3)+A(\rho _2,A(\rho _1,\rho _3)),\)

(A2):

\(\pi A(\rho _1,\rho _2)=[\pi \rho _1,\pi \rho _2],\)

(A3):

\(A(\rho _1,\rho _1)=i_0 \mathrm{d}\left<\rho _1,\rho _1\right>_+ ,\)

for all \(\rho _1,\rho _2,\rho _3\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) and all m-manifolds M, where \(\left<-,-\right>_+\) is the pairing of Example 2.2, \(\pi :TM\,\oplus \, T^*M\rightarrow TM\) is the fibred projection given by \(\pi (v,\omega )=v\) and \(i_0:T^*M\rightarrow TM\,\oplus \, T^*M\) is the fibred embedding \(i_0(\omega )=(0,\omega )\).

Consequently, if \(m\ge 2\), then a \(\mathcal {M}f_m\)-natural bilinear operator A in the sense of Definition 2.1 satisfying the conditions (A1)–(A3) satisfies the conditions:

(A4):

\(\pi \rho _1\left<\rho _2,\rho _3\right>_+ =\left<A(\rho _1,\rho _2),\rho _3\right>_++\left<\rho _2,A(\rho _1,\rho _3\right>_+,\)

(A5):

\(A(\rho _1,f\rho _2)=\pi \rho _1(f)\rho _2+fA(\rho _1,\rho _2)\)

for all \(\rho _1,\rho _2\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\), all \(f\in \mathcal {C}^\infty (M)\) and all m-manifolds M (i.e., putting \([[-,-]]:=A\) we get an exact Courant algebroid \(E=(TM\,\oplus \, T^*M, [[-,-]], \) \(\left<-,-\right>_+, \pi , i_0)\) in the sense of [8] for any m-manifold M).

Proof

By Theorem 2.7, the conditions (A1) and (A2) imply that \(A=A^{\left<1,1\right>}\) or \(A=A^{\left<2,1\right>}\) or \(A=A^{\left<3,1\right>}\) or \(A=A^{\left<4,1,0\right>}\). On the other hand if \(\rho _1=X\,\oplus \,\omega \), then \(i_0\mathrm {d}\left<\rho _1,\rho _1\right>_+=0\,\oplus \, \mathrm {d}i_X\omega \) and \(A^{\left<1,1\right>}(\rho _1,\rho _1)=0\,\oplus \, 0\) and \(A^{\left<2,1\right>}(\rho _1,\rho _1)=0\,\oplus \, 0\) and \(A^{\left<3,1\right>}(\rho _1,\rho _1)=0\,\oplus \,\mathcal {L}_X\omega \) and \(A^{\left<4,1,0\right>}(\rho _1,\rho _1)=0\,\oplus \, \mathrm {d}i_X\omega \). Then \(A=A^{\left<4,1,0\right>}\). \(\square \)

Corollary 2.9

If \(m\ge 2\), any \(\mathcal {M} f_m\)-natural Lie algebra brackets on \(\mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) [i.e., \(\mathcal {M}f_m\)-natural skew-symmetric bilinear operator satisfying the Jacobi identity (Leibniz rule) is the constant multiple of the one of the following two Lie algebra brackets:

$$\begin{aligned}&[[X^1\,\oplus \, \omega ^1,X^2\,\oplus \,\omega ^2]]_1=[X^1,X^2]\,\oplus \, 0,\\ {}&[[X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2]]_2=[X^1,X^2]\,\oplus \, (\mathcal {L}_{X^1}\omega ^2-\mathcal {L}_{X^2}\omega ^1). \end{aligned}$$

At the end of this section we are going to describe completely all Lie algebroids \((TM\otimes T^*M, [[-,-]],a)\) which are invariant with respect to immersions (\(\mathcal {M} f_m\)-maps). The concept of Lie algebroids can be found in the fundamental book [6].

Of course, the anchor \(a:TM\,\oplus \, T^*M\rightarrow TM\) for all m-manifolds M must be \(\mathcal {M} f_m\)-natural transformation [i.e., \(Tf\circ a=a\circ (Tf\,\oplus \, T^*f)\) for any \(\mathcal {M} f_m\)-map \(f:M\rightarrow M^1\)] and fibre linear. By Corollary 2.9, \([[-,-]]=\mu [[-,-]]_1\) or \([[-,-]]=\mu [[-,-]]_2\) for some \(\mu \in \mathbf {R}\).

Lemma 2.10

Any \(\mathcal {M} f_m\)-natural transformation \(a:TM\,\oplus \, T^*M\rightarrow TM\) which is fibre linear is the constant multiple of the fibre projection \(\pi :TM\,\oplus \, T^*M\rightarrow TM\).

Proof

Clearly, a is determined by the values \(<\eta , a_x(v,\omega )>\in \mathbf {R}\) for all \(\omega ,\eta \in T^*_xM\), \(v\in T_xM\), \(x\in M\), \(M\in {\mathrm {Obj}}(\mathcal {M} f_m)\). By the standard chart arguments, we may assume \(M=\mathbf {R}^m\), \(x=0\ ,\) \(\eta =\mathrm {d}_0x^1 \). We can write \(<\mathrm {d}_0x^1,a_0(v,\omega )>=\sum _i\alpha _iv^i+\sum _j\beta ^j\omega _j\), where \(v^i\) are the coordinates of v and \(\omega _j\) are the coordinates of \(\omega \), and where \(\alpha _i\) and \(\beta ^j\) are the real numbers determined by \(a_0\). Then using the invariance of \(a_0\) with respect to the maps \((\tau ^1x^1,...,\tau ^mx^m)\) for \(\tau ^1>0,...,\tau ^m>0\) we deduce that \(\alpha _2=\cdots =\alpha _m=0\) and \(\beta _1=\cdots =\beta _m=0\). Then the vector space of all a in question is at most 1-dimensional. Thus the dimension argument completes the proof. \(\square \)

So, \(a=k\pi \) for some real number k. It must be \(a([[X^1\,\oplus \, 0,X^2\,\oplus \, 0]])=[a(X^1\,\oplus \,0),a(X^2\,\oplus \, 0)]\) for any vector fields \(X^1\) and \(X^2\) on M. This gives the condition \(k\mu [X^1,X^2]=k^2[X^1,X^2].\) Then \(k\mu =k^2\), and then (\(k=0\) and \(\mu \) arbitrary) or (\(k\not =0\) and \(\mu =k\)). Consider two cases:

1.  \([[-,-]]=\mu [[-,-]]_1\). Let \(\rho ^1=X^1\,\oplus \,\omega ^1\) and \(\rho ^2=X^2\,\oplus \,\omega ^2\). It must be \([[\rho ^1,f\rho ^2]]=a(\rho ^1)(f)\rho ^2+f[[\rho ^1,\rho ^2]]\). Considering the \(\Omega ^1(M)\)-parts of both sides of this equality we get \(0=kX^1(f)\omega ^2+0\) for any vector fields \(X^1,X^2\) on M any map \(f:M\rightarrow \mathbf {R}\) and any \(\omega ^1,\omega ^2\in \Omega ^1(M)\). Then \(k=0\). Then considering the \(\mathcal {X}(M)\)-parts we get \(\mu [X^1,fX^2]= f\mu [X^1,X^2]\). Then \(\mu X^1(f)X^2=0\) for all vector fields \(X^1\) and \(X^2\) on M and all maps \(f:M\rightarrow \mathbf {R}\), i.e., \(\mu =0\).

2.  \( [[-,-]]=\mu [[-,-]]_2\). Let \(\rho ^1=0\,\oplus \, \omega ^1\) and \(\rho ^2=X^2\,\oplus \, 0\). It must be \([[\rho ^1,f\rho ^2]]=a(\rho ^1)(f)\rho ^2+f[[\rho ^1,\rho ^2]]\). Considering the \(\Omega ^1(M)\)-parts of both sides of this equality we get \(-\mu \mathcal {L}_{fX^2}\omega ^1=-\mu f\mathcal {L}_{X^2}\omega ^1\). Then \(\mu =0\) or \( \mathrm{d}i_{fX^2}\omega ^1+ i_{fX^2}\mathrm{d}\omega ^1= f\mathrm{d}i_{X^2}\omega ^1+ f i_{X^2}\mathrm{d}\omega ^1\). Putting \(\omega ^1=\mathrm{d}g\) we get \(\mu =0\) or \(\mathrm{d}(i_{fX^2}\mathrm{d}g)=f\mathrm{d}i_{X^2}\mathrm{d}g\). Then \(\mu =0\) or \(\mathrm{d}(fX^2g)=f\mathrm{d}(X^2g)\). Then \(\mu =0\) or \(X^2(g)\mathrm{d}f=0\) for any \(X^2,g,f\) in question. Putting \(X^2={\partial \over \partial x^1}\) and \(f=g=x^1\) we get \(\mu =0\) or \(\mathrm{d}x^1=0\). Then \(\mu =0\), and then \(k=\mu =0\).

On the other hand one can directly show that \((TM\,\oplus \, T^*M, 0[[-,-]]_1,0\pi )\) is a Lie algebroid. Thus we have

Proposition 2.11

If \(m\ge 2\), \((TM\otimes T^*M,0,0)\) is the only invariant with respect to \(\mathcal {M} f_m\)-maps Lie algebroid \((EM,[[-,-]],a)\) with \(EM=TM\,\oplus \, T^*M\).

3 The Natural Operators Similar to the Twisted Courant Bracket

Definition 3.1

A \(\mathcal {M} f_m\)-natural operator A sending p-forms \(H\in \Omega ^p(M)\) on m-manifolds M into bilinear operators

$$\begin{aligned}A_H:({\mathcal {X}}(M)\,\oplus \, \Omega ^1(M))\times ({\mathcal {X}}(M)\,\oplus \,\Omega ^1(M))\rightarrow {\mathcal {X}}(M)\,\oplus \,\Omega ^1(M),\end{aligned}$$

is a \(\mathcal {M} f_m\)-invariant family of regular operators (functions)

$$\begin{aligned}A:\Omega ^p(M)\rightarrow Lin_2((\mathcal {X}(M)\,\oplus \,\Omega ^1(M))\times (\mathcal {X}(M)\,\oplus \,\Omega ^1(M)), \mathcal {X}(M)\,\oplus \,\Omega ^1(M))\end{aligned}$$

for all m-manifolds M, where \(Lin_2(U\times V,W)\) denotes the vector space of all bilinear (over \(\mathbf {R}\)) functions \(U\times V\rightarrow W\) for any real vector spaces UVW.

The \(\mathcal {M} f_m\)-invariance of A means that if \(H^1\in \Omega ^p(M)\) and \(H^2\in \Omega ^p(\overline{M})\) are \(\varphi \)-related and \((X^1\,\oplus \,\omega ^1, X^2\,\oplus \,\omega ^2) \) and \((\overline{X}^1\,\oplus \,\overline{\omega }^1,\overline{X}^2\,\oplus \,\overline{\omega }^2) \) are \(\varphi \)-related by an \(\mathcal {M} f_m\)-map \(\varphi :M\rightarrow \overline{M}\), then so are \(A_{H^1}(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)\) and \(A_{H^2}(\overline{X}^1\,\oplus \,\overline{\omega }^1,\overline{X}^2\,\oplus \,\overline{\omega }^2)\).

The regularity of A means that it transforms smoothly parametrized families \((H_t,X^1_t\,\oplus \, \omega ^1_t,X^2_t\,\oplus \,\omega ^2_t)\) into smoothly parametrized families \(A_{H_t}(X^1_t\,\oplus \,\omega ^1_t, X^2_t\,\oplus \,\omega ^2_t)\).

Example 3.2

The most important example of \(\mathcal {M} f_m\)-natural operator in the sense of Definition 3.1 for \(p=3\) is given by the H-twisted Courant bracket

$$\begin{aligned}&[X^1\oplus \omega ^1,X^2\oplus \omega ^2]_H := [X^1,X^2]\,\oplus \,\left( \mathcal {L}_{X^1}\omega ^2-i_{X^2}\mathrm {d}\omega ^1+i_{X^1}i_{X^2}H\right) \ \end{aligned}$$

for all 3-forms \(H\in \Omega ^3(M)\) and all m-manifolds M. We call this \(\mathcal {M} f_m\)-natural operator the twisted Courant bracket \(\mathcal {M} f_m\)-natural operator.

Example 3.3

The operator given by \([-,-]_{\mathrm{d}H}\ \) for all \(H\in \Omega ^2(M)\) and all m-manifolds M is a \(\mathcal {M} f_m\)-natural operator in the sense of Definition 3.1 for \(p=2\).

The main result of this section is the following

Theorem 3.4

Assume \(m\ge 3\). Then we have:

  1. 1.

    Any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=2\) such that \(A_{H}=A_{H+\mathrm{d}H^1}\) for any \(H\in \Omega ^2(M)\) and any \(H^1\in \Omega ^1(M)\) is of the form

    $$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2] \\&\quad \oplus \, \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ ci_{X^1}i_{X^2}\mathrm {d}H\right) , \end{aligned}$$

    for (uniquely determined by A) reals \(a, b_1,...,c\), where 2-forms \(H\in \Omega ^2(M)\), pairs \(\rho ^i=X^i\,\oplus \,\omega ^i\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) for \(i=1,2\) and m-manifolds M are arbitrary.

  2. 2.

    Any \(\mathcal {M} f_m\)-natural operator (not necessarily satisfying \(A_H=A_{H+\mathrm {d}H^1}\)) in the sense of Definition 3.1 for \(p=3\) is of the form

    $$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \, \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ci_{X^1}i_{X^2}H\right) , \end{aligned}$$

    for (uniquely determined by A) reals \(a, b_1,...,c\), where 3-forms \(H\in \Omega ^3(M)\), pairs \(\rho ^i=X^i\,\oplus \,\omega ^i\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) for \(i=1,2\) and m-manifolds M are arbitrary.

  3. 3.

    If \(p\ge 4\), any \(\mathcal {M} f_m\)-natural operator (not necessarily satisfying \(A_H=A_{H+\mathrm {d}H^1}\)) in the sense of Definition 3.1 is of the form

    $$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2]\,\oplus \, \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-\right) \end{aligned}$$

    for (uniquely determined by A) reals \(a, b_1,...,b_4\), where p-forms \(H\in \Omega ^p(M)\), pairs \(\rho ^i=X^i\,\oplus \,\omega ^i\in \mathcal {X}(M)\,\oplus \,\Omega ^1(M)\) for \(i=1,2\) and m-manifolds M are arbitrary.

Proof

Clearly, \(A_0\), where 0 is the zero p-form, can be treated as the bilinear operator in the sense of Definition 2.1. Then \(A_0\) is described in Theorem 2.3. So we can replace A by \(A-A_0\). In other words, we have assumption \(A_0=0\).

By the invariance, A is determined by the values \(A_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert _0}\) for all \(H\in \Omega ^p(\mathbf {R}^m), X^i\,\oplus \,\omega ^i\in \mathcal {X}(\mathbf {R}^m)\oplus \Omega ^1(\mathbf {R}^m)\). Put

$$\begin{aligned}&A_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert 0}\\&\quad =\left( A^1_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert 0}, A^2_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert 0}\right) ,\end{aligned}$$

where \(A^1_H(...)_{\vert 0}\in T_0\mathbf {R}^m\) and \(A^2_H(...)_{\vert 0}\in T^*\mathbf {R}^m\). Then A is determined by

$$\begin{aligned} \left<A^1_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert _0},\eta \right>\in \mathbf {R}\; \text{ and }\; \left<A^2_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert 0},\mu \right>\in \mathbf {R} \end{aligned}$$

for all \(H\in \Omega ^p(\mathbf {R}^m) , X^i\,\oplus \,\omega ^i\in \mathcal {X}(\mathbf {R}^m)\oplus \Omega ^1(\mathbf {R}^m)\), \(\eta \in T^*_0\mathbf {R}^m, \mu \in T_0\mathbf {R}^m\), \(i=1,2\).

By the non-linear Peetre theorem, see [5], A is of finite order. It means that there is a finite number r such that from \((j^r_xH=j^r_x\overline{H} , j^r_x(\rho ^i)=j^r_x(\overline{\rho }^i), i=1,2)\) it follows \(A_{H}(\rho ^1,\rho ^2)_{\vert x}=A_{\overline{H}}(\overline{\rho }^1,\overline{\rho }^2)_{\vert x}\). So, we may assume that \(H, X^1,X^2, \omega ^1, \omega ^2\) are polynomials of degree not more than r.

Using the invariance of A with respect to the homotheties and the bi-linearity of \(A_H\) (for given H) we obtain homogeneity condition

$$\begin{aligned}&\left\langle A^1_{\left( {1\over t}\mathrm {id}\right) _*H}\left( t\left( {1\over t}\mathrm {id}\right) _*X^1\,\oplus \, t\left( {1\over t}\mathrm {id}\right) _*\omega ^1, t\left( {1\over t}\mathrm {id}\right) _*X^2\,\right. \right. \\ {}&\qquad \left. \left. \oplus \, t\left( {1\over t}\mathrm {id}\right) _*\omega ^2\right) _{\vert _0},\eta \right\rangle \\ {}&\quad =t\left<A^1_H(X^1\,\oplus \,\omega ^1, X^2\,\oplus \,\omega ^2)_{\vert _0},\eta \right>. \end{aligned}$$

Then, by the homogeneous function theorem, since A is of finite order and regular and \(A_0=0\) and \(p\ge 2\), we have \(\left<A^1_H(X^1\,\oplus \,\omega ^1,X^2\,\oplus \,\omega ^2)_{\vert _0},\eta \right>=0.\)

Using the same arguments we get homogeneity condition

$$\begin{aligned}&\left\langle A^2_{\left( {1\over t}\mathrm {id}\right) _*H}\left( t\left( {1\over t}\mathrm {id}\right) _*X^1\oplus t\left( {1\over t}\mathrm {id}\right) _*\omega ^1, t\left( {1\over t}\mathrm {id}\right) _*X^2\right. \right. \\ {}&\qquad \left. \left. \oplus t\left( {1\over t}\mathrm {id}\right) _*\omega ^2\right) _{\vert _0},\mu \right\rangle \\ {}&\quad =t^3\left<A^2_H(X^1\oplus \omega ^1, X^2\oplus \omega ^2)_{\vert _0},\mu \right>. \end{aligned}$$

Then, if \(p=2\), by the homogeneous function theorem and the bi-linearity of \(A_H\) and the assumptions \(A_0=0\) and \(A_H=A_{H+\mathrm {d}H^1}\), the value \(\left<A^2_H(X^1\oplus \omega ^1,X^2\oplus \omega ^2)_{\vert 0},\mu \right>\) depends quadrilinearly on \(X^1{}_{\vert 0}\), \(X^2{}_{\vert 0}\), \(j^1_0(H-H_{\vert 0})\) and \(\mu \), only. By \(m\ge 3\) and the regularity of A, we may assume that \(X^1_{\vert 0}\), \(X^2_{\vert 0}\) and \(\mu \) are linearly independent. Then by the invariance we may assume \(X^1_{\vert 0}=\partial _1{}_{\vert 0}\), \(X^2_{\vert 0}=\partial _2{}_{\vert 0}\) and \(\mu =\partial _3{}_{\vert 0}\). Then A is determined by the values \(\left<A^2_{x^{i_1}\mathrm{d}x^{i_2}\wedge \mathrm{d}x^{i_3}}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _3{}_{\vert 0}\right>\) for all \(i_1=1,...,m\) and \(i_2,i_3\) with \(1\le i_2<i_3\le m\). Then using the invariance of A with respect to \(\tau \mathrm {id}\) for \(\tau ^i>0\) we deduce that only \(v:=\left<A^2_{x^1 \mathrm {d}x^2\wedge \mathrm {d}x^3}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _{3}{}_{\vert 0}\right>\),\(w:=\left<A^2_{x^2 \mathrm {d}x^1\wedge \mathrm {d}x^3}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _{3}{}_{\vert 0}\right>\), \(z:=\left<A^2_{x^3 \mathrm {d}x^1\wedge \mathrm {d}x^2}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _{3}{}_{\vert 0}\right>\) may be not-zero. But \(x^1\mathrm {d}x^2\wedge \mathrm {d}x^3=-x^2\mathrm {d}x^1\wedge \mathrm {d}x^3+\mathrm {d}(...)\). So, \(v=-w\). Similarly, \(v=-z\). Therefore the vector space of all A in question with \(A_0=0\) and \(A_{H}=A_{H+\mathrm {d}H^1}\) is at most one-dimensional. The part (1) of the theorem is complete. If \(p=3\), then (by almost the same arguments as for \(p=2\)) A is determined by the values \(\left<A^2_{\mathrm {d}x^{i_1}\wedge \mathrm {d}x^{i_2}\wedge \mathrm {d}x^{i_3}}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _3{}_{\vert 0}\right>\in \mathbf {R} \) for all \(i_1,i_2,i_3\) with \(1\le i_1<i_2<i_3\le m\). Then using the invariance with respect to \((\tau ^1x^1,...\tau ^mx^m)\) for \(\tau ^i>0\) we deduce that only the value \(\left<A^2_{\mathrm{d}x^1\wedge \mathrm{d}x^2\wedge \mathrm{d}x^3}(\partial _1\oplus 0,\partial _2\oplus 0),\partial _{3}{}_{\vert 0}\right>\in \mathbb {R}\) may be not-zero. Therefore the vector space of all A in question with \(A_0=0\) is one-dimensional (generated by the natural operator \(0\oplus i_{X^1}i_{X^2}H\)).

If \(p\ge 4\), then (similarly as for \(p=2\)) \(<A^2_H(X^1\oplus \omega ^1,X^2\oplus \omega ^2)_{\vert 0},\mu >=0\).

Theorem 3.4 is complete. \(\square \)

Corollary 3.5

If \(m\ge 3\), any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=3\) such that \(A_H\) is skew-symmetric for any \(H\in \Omega ^3(M)\) and any m-manifold M is of the form

$$\begin{aligned}&A_H(X^1\oplus \omega ^1,X^2\oplus \omega ^2)=a[X^1,X^2]\\&\quad \oplus \left( b(\mathcal {L}_{X^1}\omega ^2-\mathcal {L}_{X^2}\omega ^1)+c\mathrm{d}\left<X^2\oplus \omega ^1,X^1\oplus \omega ^2\right>_-+ei_{X^1}i_{X^2}H\right) \end{aligned}$$

for (uniquely determined by A) real numbers abce.

Roughly speaking, Corollary 3.5 says that any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 such that \(A_H\) is skew-symmetric for any \(H\in \Omega ^3(M)\) and any m-manifold M coincides with the “skew-symmetrization” of the twisted Courant bracket \(\mathcal {M} f_m\)-natural operator up to four real constants abce.

Corollary 3.6

If \(m\ge 3\), then the twisted Courant bracket \(\mathcal {M} f_m\)-natural operator from Example 3.2 is the unique \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=3\) satisfying the following properties:

(B1):

\(A_0(\rho _1,\rho _2)=[\rho _1,\rho _2]_0,\)

(B2):

\(A_H(X\oplus 0,Y\oplus 0)=[X,Y]\oplus i_{X}i_{Y}H\)

for all closed \(H\in \Omega _{cl}^3(M)\), all \(\rho _1,\rho _2, X\oplus 0, Y\oplus 0\in \mathcal {X}(M)\oplus \Omega ^1(M)\) and all m-manifolds M, where \([-,-]_0\) is the \(\mathcal {M} f_m\)-natural bilinear operator given by the (not skew-symmetric) Courant bracket as in Example 2.6.

Proof

Clearly, the twisted Courant bracket \(\mathcal {M} f_m\)-natural operator satisfies (B1) and (B2). Consider A in question satisfying (B1) and (B2). Then by Theorem 3.4, there exist uniquely determined reals \(a,b_1,...,c\) such that for all \(H\in \Omega ^3(M)\) and m-manifolds M

$$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ci_{X^1}i_{X^2}H\right) , \end{aligned}$$

where \(\rho ^i=X^i\oplus \omega ^i\in \mathcal {X}(M)\oplus \Omega ^1(M)\) are arbitrary. Putting \(\omega ^1=\omega ^2=0\) we get \(A_H(\rho ^1,\rho ^2)=a[X^1,X^2]\oplus ci_{X^1}i_{X^2}H \). Then condition (B2) implies \(c=1\). Putting \(H=0\) we get

$$\begin{aligned}&A_0 (\rho ^1,\rho ^2)= a[X^1,X^2]\oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-\right) \end{aligned}$$

for all \(\rho ^i=X^i\oplus \omega ^i\in \mathcal {X}(M)\oplus \Omega ^1(M)\) and all m-manifolds M. But \(A_0\) is a \(\mathcal {M} f_m\)-natural bilinear operator in the sense of Definition 2.1. Then \(a,b_1,b_2,b_3,b_4\) are uniquely determined because of Theorem 2.3. Then \(a,b_1,...,c\) are uniquely determined. So, A is uniquely determined by conditions (B1) and (B2). \(\square \)

4 The Natural Operators Similar to the Twisted Courant Bracket and Defined for Closed p-Forms Only

In the previous section, we considered \(\mathcal {M} f_m\)-natural operators A which are defined for all p-forms H. In this section, we observe what happens if A are defined for closed p-forms H, only. We start with the following

Definition 4.1

A \(\mathcal {M} f_m\)-natural operator A sending closed p-forms \(H\in \Omega _{cl}^p(M)\) on m-manifolds M into bilinear operators

$$\begin{aligned} A_H:({\mathcal {X}}(M)\oplus \Omega ^1(M))\times ({\mathcal {X}}(M)\oplus \Omega ^1(M))\rightarrow {\mathcal {X}}(M)\oplus \Omega ^1(M),\end{aligned}$$

is a \(\mathcal {M} f_m\)-invariant family of regular operators (functions)

$$\begin{aligned}A:\Omega _{cl}^p(M)\!\rightarrow \! Lin_2((\mathcal {X}(M)\oplus \Omega ^1(M))\!\times \! (\mathcal {X}(M)\oplus \Omega ^1(M)), \mathcal {X}(M)\oplus \Omega ^1(M)),\end{aligned}$$

for all m-manifolds M.

We have the following corollary of Theorem 3.4.

Corollary 4.2

Assume \(m\ge 3\). Then we have:

  1. 1.

    If \(p=3\), any \(\mathcal {M} f_m\)-natural operator in the sense of Definition 4.1 is of the form

    $$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2] \\ {}&\quad \oplus (b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ci_{X^1}i_{X^2}H), \end{aligned}$$

    for uniquely determined by A reals \(a, b_1,...,c\), where closed 3-forms \(H\in \Omega ^3_{cl}(M)\), pairs \(\rho ^i=X^i\oplus \omega ^i\in \mathcal {X}(M)\oplus \Omega ^1(M)\) for \(i=1,2\) and m-manifolds M are arbitrary.

  2. 2.

    If \(p\ge 4\), any \(\mathcal {M} f_m\)-natural operator in the sense of Definition 4.1 is of the form

    $$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-\right) \end{aligned}$$

    for uniquely determined by A reals \(a, b_1,...,b_4\), where closed p-forms \(H\in \Omega ^p_{cl}(M)\), pairs \(\rho ^i=X^i\oplus \omega ^i\) for \(i=1,2\) and m-manifolds M are arbitrary.

Proof

Let A be a \(\mathcal {M} f_m\)-natural operator in the sense of Definition 4.1 for p. Define a \(\mathcal {M} f_m\)-natural operator \(A^1\) in the sense of Definition 3.1 for \(p-1\) by \(A^1_{{\tilde{H}}}=A_{\mathrm {d}{\tilde{H}}}.\) Then \(A^1_{{\tilde{H}}+\mathrm {d}H_1}=A^1_{{\tilde{H}}} \) for any \({\tilde{H}}\in \Omega ^{p-1}(M)\) and \(H_1\in \Omega ^{p-2}(M)\).

If \(p=3\), then by Theorem 3.4, \(A^1\) is of the form

$$\begin{aligned}&A^1_{{\tilde{H}}} (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ ci_{X^1}i_{X^2}\mathrm {d}{\tilde{H}}\right) \end{aligned}$$

for uniquely determined reals \(a, b_1,...,c\) and all \({\tilde{H}}\in \Omega ^2(M)\), where \(\rho ^i=X^i\oplus \omega ^i\) for \(i=1,2\). Then

$$\begin{aligned}&A_H (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ci_{X^1}i_{X^2}H\right) \end{aligned}$$

for all exact 3-forms H, where \(\rho ^i=X^i\oplus \omega ^i\) for \(i=1,2\). But by the locality of A and the Poincare lemma we may replace the phrase “all exact 3-forms” by “all closed 3-forms”.

If \(p\ge 4\), then by Theorem 3.4, \(A^1\) is of the form

$$\begin{aligned}&A^1_{{\tilde{H}}} (\rho ^1,\rho ^2) = a[X^1,X^2]\\ {}&\quad \oplus \left( b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2 +b_3\mathrm {d}\left<\rho ^1,\rho ^2\right>_+ + b_4\mathrm {d}\left<\rho ^1,\rho ^2\right>_-+ ci_{X^1}i_{X^2}\mathrm {d}{\tilde{H}}\right) \end{aligned}$$

for uniquely determined reals \(a, b_1,...,c\) (with arbitrary c if \(p=4\) and with \(c=0\) if \(p\ge 5\)) and all \({\tilde{H}}\in \Omega ^{p-1}(M)\), where \(\rho ^i=X^i\oplus \omega ^i\) for \(i=1,2\). The condition \(A^1_{{\tilde{H}}}=A^1_{{\tilde{H}}+\mathrm {d}H_1}\) implies \(ci_{X^1}i_{X^2}\mathrm {d}H_1=0\) for any \(H_1\in \Omega ^{p-2}(M)\). If \(p=4\), putting \(X^1=\partial _1\), \(X^2=\partial _2\) and \(H_1=x^1\mathrm{d}x^2\wedge \mathrm{d}x^3\), we get \(c(-\mathrm{d}x^3)=0\), i.e., \(c=0\). If \(p\ge 5\), then \(c=0\), see above. Next, we proceed similarly as in the case \(p=3\). \(\square \)

The above corollary and Theorem 3.4 imply

Theorem 4.3

If \(m\ge 3\) and \(p\ge 3\) then any \(\mathcal {M} f_m\)-natural operator in the sense of Definition 4.1 can be extended uniquely to a \(\mathcal {M} f_m\)-natural operator in the sense of Definition 3.1.

Roughly speaking, if \(m\ge 3\) and \(p\ge 3\), then any \(\mathcal {M} f_m\)-natural operator in the sense of Definition 4.1 can be treated as the \(\mathcal {M} f_m\)-natural operator in the sense of Definition 3.1, and vice-versa.

5 The Natural Operators Similar to the Twisted Courant Bracket and Satisfying the Leibniz Rule for Closed 3-Forms

Definition 5.1

A \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 (or equivalently in the sense of Definition 4.1) satisfies the Leibniz rule for closed p-forms if

$$\begin{aligned}A_H(\rho _1,A_H(\rho _2,\rho _3))=A_H(A_H(\rho _1,\rho _2),\rho _3)+A_H(\rho _2,A_H(\rho _1,\rho _3)) \end{aligned}$$

for all \(\rho _1,\rho _2,\rho _3\in \mathcal {X}(M)\oplus \Omega ^1(M)\), all closed p-forms \(H\in \Omega _{cl}^p(M)\) and all m-manifolds M.

Example 5.2

The twisted Courant bracket \(\mathcal {M} f_m\)-natural operator presented in Example 3.2 satisfies the Leibniz rule for closed 3-forms, see [3, 8].

Theorem 5.3

If \(m\ge 3\), any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 (or equivalently of Definition 4.1) for \(p=3\) satisfying the Leibniz rule for closed 3-forms is one of the \(\mathcal {M} f_m\)-natural operators:

$$\begin{aligned} A^{\left<1,a\right>}_H(\rho _1,\rho _2)=&{} a[X^1,X^2]\oplus 0 ,\\ A^{\left<2,a\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a(\mathcal {L}_{X^1}\omega ^2-\mathcal {L} _{X^2}\omega ^1)),\\ A^{\left<3,a\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a\mathcal {L}_{X^1}\omega ^2), \\ A^{\left<4,a,e\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a(\mathcal {L}_{X^1}\omega ^2- i_{X^2}\mathrm {d}\omega ^1)+ei_{X^1}i_{X^2}H), \end{aligned}$$

where \(\rho ^1=X^1\oplus \omega ^1\) and \(\rho ^2=X^2\oplus \omega ^2\), and a and e are arbitrary real numbers.

Proof

Let A be a \(\mathcal {M} f_m\)-natural operator in the sense of Definition 3.1 for \(p=3\) such that \(A_H\) satisfies the Leibniz rule for any closed \(H\in \Omega ^3_{cl}(M)\). By Theorem 3.4, A is of the form

$$\begin{aligned}&A_H(X^1\oplus \omega ^1,X^2\oplus \omega ^2) =a [X^1,X^2]\\ {}&\quad \oplus (b_1\mathcal {L}_{X^2}\omega ^1+b_2 \mathcal {L}_{X^1}\omega ^2+c_1 \mathrm {d}i_{X^2}\omega ^1+c_2 \mathrm {d}i_{X^1}\omega ^2+ei_{X^1}i_{X^2}H), \end{aligned}$$

for (uniquely determined by A) real numbers \(a, b_1,b_2,c_1,c_2,e\). Then for any \(X^1,X^2,\) \(X^3\in \mathcal {X}(M)\) and \(\omega ^1,\omega ^2,\omega ^3\in \Omega ^1(M)\) we have

$$\begin{aligned}&A_H(X^1\oplus \omega ^1, A_H(X^2\oplus \omega ^2,X^3\oplus \omega ^3))=a^2[X^1,[X^2,X^3]]\oplus \Omega ,\\&A_H(A_H(X^1\oplus \omega ^1,X^2\oplus \omega ^2),X^3\oplus \omega ^3)=a^2[[X^1,X^2],X^3]\oplus \Theta ,\\&A_H(X^2\oplus \omega ^2,A_H(X^1\oplus \omega ^1,X^3\oplus \omega ^3))=a^2[X^2,[X^1,X^3]]\oplus \mathcal {T}, \end{aligned}$$

where

$$\begin{aligned} \Omega= & {} b_1\mathcal {L}_{a[X^2,X^3]}\omega ^1+ c_1\mathrm{d}i_{a[X^2,X^3]}\omega ^1 + ei_{X^1}i_{a[X^2,X^3]}H\\&+\, b_2\mathcal {L}_{X^1}( b_1\mathcal {L}_{X^3}\omega ^2 +b_2\mathcal {L}_{X^2}\omega ^3+c_1\mathrm{d}i_{X^3}\omega ^2+c_2\mathrm{d}i_{X^2}\omega ^3+ei_{X^2}i_{X^3}H)\\&+\,c_2\mathrm{d}i_{X^1}( b_1\mathcal {L}_{X^3}\omega ^2+b_2\mathcal {L}_{X^2}\omega ^3+c_1\mathrm{d}i_{X^3}\omega ^2+c_2\mathrm{d}i_{X^2}\omega ^3+ei_{X^2}i_{X^3}H) ,\\ \Theta= & {} b_2\mathcal {L}_{a[X^1,X^2]}\omega ^3 + c_2\mathrm{d}i_{a[X^1,X^2]}\omega ^3+ei_{a[X^1,X^2]}i_{X^3}H\\&+\,b_1\mathcal {L}_{X^3}( b_1\mathcal {L}_{X^2}\omega ^1+ b_2\mathcal {L}_{X^1}\omega ^2+c_1\mathrm{d}i_{X^2}\omega ^1+ c_2\mathrm{d}i_{X^1}\omega ^2+e_{X^1}i_{X^2}H)\\&+\,c_1\mathrm{d}i_{X^3}(b_1\mathcal {L}_{X^2}\omega ^1+b_2\mathcal {L}_{X^1}\omega ^2+c_1\mathrm{d}i_{X^2}\omega ^1+c_2\mathrm{d}i_{X^1}\omega ^2+ei_{X^1}i_{X^2}H) ,\\ \mathcal {T}= & {} b_1\mathcal {L}_{a[X^1,X^3]}\omega ^2+c_1\mathrm{d}i_{a[X^1,X^3]}\omega ^2+ei_{X^2}i_{a[X^1,X^3]}H\\&+\,b_2\mathcal {L}_{X^2}(b_1\mathcal {L}_{X^3}\omega ^1+ b_2\mathcal {L}_{X^1}\omega ^3 +c_1\mathrm{d}i_{X^3}\omega ^1+c_2 \mathrm{d}i_{X^1}\omega ^3+ei_{X^1}i_{X^3}H)\\&+\,c_2 \mathrm{d}i_{X^2}(b_1\mathcal {L}_{X^3}\omega ^1 +b_2\mathcal {L}_{X^1}\omega ^3+c_1\mathrm{d}i_{X^3}\omega ^1+c_2\mathrm{d}i_{X^1}\omega ^3+ei_{X^1}i_{X^3}H). \end{aligned}$$

The Leibniz rule of \(A_H\) is equivalent to \(\Omega =\Theta +\mathcal {T}.\)

Putting \(H=0\), we are in the situation of Theorem 2.7. Then by Theorem 2.7 (i.e., by Theorem 3.2 in [2]) we get \((b_1,b_2,c_1,c_2)=(0,0,0,0)\) or \((b_1,b_2,c_1,c_2)=(0,a,0,0)\) or \((b_1,b_2,c_1,c_2)=(-a,a,0,0)\) or \((b_1,b_2,c_1,c_2)=(-a,a,a,0)\). More, \(A_0\) for such \((b_1,b_2,c_1,c_2)\) satisfies the Leibniz rule.

Therefore (as \(c_2=0\)) the Leibniz rule of \(A_H\) is equivalent to the equality

$$\begin{aligned}&eai_{X^1}i_{[X^2,X^3]}H + b_2e\mathcal {L}_{X^1} i_{X^2}i_{X^3}H\\&\quad = eai_{[X^1,X^2]}i_{X^3}H +b_1e\mathcal {L}_{X^3} i_{X^1}i_{X^2}H +c_1e\mathrm{d}i_{X^3} i_{X^1}i_{X^2}H\\&\qquad +eai_{X^2}i_{[X^1,X^3]}H+ b_2e\mathcal {L}_{X^2} i_{X^1}i_{X^3}H . \end{aligned}$$

If \((b_1,b_2,c_1,c_2)=(0,0,0,0)\), the above equality is equivalent to

$$\begin{aligned} eai_{X^1}i_{[X^2,X^3]}H=eai_{[X^1,X^2]}i_{X^3}H+ea i_{X^2}i_{[X^1,X^3]}H. \end{aligned}$$

Putting \(X^1=\partial _1\), \(X^2=\partial _1+x^1\partial _3\) and \(X^3=\partial _2\) we have \([X^2,X^3]=0\), \([X^1,X^3]=0\) and \([X^1,X^2]=\partial _3\), and then \(0=eai_{\partial _3}i_{\partial _2}H\) for any closed H (for example for \(H=\mathrm{d}x^1\wedge \mathrm{d}x^2\wedge \mathrm{d}x^3\)). Consequently \(e=0\) or \(a=0\).

If \((b_1, b_2,c_1,c_2)=(0,a,0,0)\), the above equality is equivalent to

$$\begin{aligned}&eai_{X^1}i_{[X^2,X^3]}H+ea \mathcal {L}_{X^1}i_{X^2}i_{X^3} H\\&\quad =eai_{[X^1,X^2]}i_{X^3}H+ea i_{X^2}i_{[X^1,X^3]}H+ea\mathcal {L}_{X^2}i_{X^1}i_{X^3}H. \end{aligned}$$

Putting \(X^1=\partial _1\), \(X^2=\partial _2\) and \(X^3=\partial _3\) and \(H=x^2\mathrm{d}x^1\wedge \mathrm{d}x^2\wedge \mathrm{d}x^3\) (it is closed) we have \([X^2,X^3]=0\), \([X^1,X^2]=0\), \([X^1,X^3]=0\), \(\mathcal {L}_{X^2}i_{X^1}i_{X^3}H=\mathcal {L}_{\partial _2}x^2\mathrm{d}x^2=\mathrm{d}x^2\) and \(\mathcal {L}_{X^1}i_{X^2}i_{X^3}H=\mathcal {L}_{\partial _1}(-x^2\mathrm{d}x^1)=0\). Then \(ea\mathrm{d}x^2=0\). So, \(a=0\) or \(e=0\).

If \((b_1,b_2,c_1,c_2)=(-a,a,0,0)\), the above equality is equivalent to

$$\begin{aligned}&eai_{X^1}i_{[X^2,X^3]}H+ea \mathcal {L}_{X^1}i_{X^2}i_{X^3} H\\&\quad = eai_{[X^1,X^2]}i_{X^3}H-ea \mathcal {L}_{X^3}i_{X^1}i_{X^2}H +ea i_{X^2}i_{[X^1,X^3]}H+ea\mathcal {L}_{X^2}i_{X^1}i_{X^3}H. \end{aligned}$$

Putting \(X^1=\partial _1\), \(X^2=\partial _2\) and \(X^3=\partial _3\) and \(H=x^2\mathrm{d}x^1\wedge \mathrm{d}x^2\wedge \mathrm{d}x^3\) we have (see above) \([X^2,X^3]=0\), \([X^1,X^2]=0\), \([X^1,X^3]=0\), \(\mathcal {L}_{X^2}i_{X^1}i_{X^3}H=\mathrm{d}x^2\), \(\mathcal {L}_{X^1}i_{X^2}i_{X^3}H=0\) and \(\mathcal {L}_{X^3}i_{X^1}i_{X^2}H=\mathcal {L}_{\partial _3}(-x^2\mathrm{d}x^3)=0\). Then \(ea\mathrm{d}x^2=0\). So, \(a=0\) or \(e=0\).

If \((b_1,b_2,c_1,c_2)=(-a,a,a,0)\), the above equality is equivalent to

$$\begin{aligned}ea\sum \left\{ i_{X^1}i_{[X^2,X^3]}H+\mathcal {L}_{X^1}i_{X^2}i_{X^3}H\right\} =ea\mathrm{d}i_{X^1}i_{X^2}i_{X^3}H,\end{aligned}$$

where \(\sum \) is the cyclic sum \(\sum _{cycl(X^1,X^2,X^3)}\). Then e is arbitrary real number because from \(\mathrm {d}H=0 \) it follows

$$\begin{aligned}\sum \left\{ i_{X^1}i_{[X^2,X^3]}H+\mathcal {L}_{X^1}i_{X^2}i_{X^3}H\right\} =\mathrm{d}i_{X^1}i_{X^2}i_{X^3}H.\end{aligned}$$

Indeed, using \(\mathrm {d}H=0\) and \(i_{[X^1,X^4]}=\mathcal {L}_{X^1}i_{X^4}-i_{X^4}\mathcal {L}_{X^1}\) and the well-known formula expressing \(\mathrm {d}H(X^1,X^2,X^3,X^4) \), we have

$$\begin{aligned}&\sum \left\{ i_{X^4}i_{X^1}i_{[X^2,X^3]}H+i_{X^4}\mathcal {L}_{X^1}i_{X^2}i_{X^3}H\right\} \\ {}&\quad = \sum \left\{ i_{X^4}i_{X^1}i_{[X^2,X^3]}H+\mathcal {L}_{X^1}i_{X^4}i_{X^2}i_{X^3}H-i_{[X^1,X^4]}i_{X^2}i_{X^3}H\right\} \\ {}&\quad = 6\sum \{H([X^2,X^3],X^1,X^4)+X^1H(X^3,X^2,X^4)\\ {}&\qquad -H(X^3,X^2,[X^1,X^4])\}\\ {}&\quad =-24\mathrm {d}H(X^1,X^2,X^3,X^4)+6X^4H(X^3,X^2,X^1)=i_{X^4}\mathrm {d}i_{X^1}i_{X^2}i_{X^3}H. \end{aligned}$$

Summing up, given a real number \(a\not =0\) we have \((b_1,b_2,c_1,c_2,e)=(0,0,0,0,0)\) or \((b_1,b_2,c_1,c_2,e)=(0,a,0,0,0)\) or \((b_1,b_2,c_1,c_2,e)=(-a,a,0,0,0,)\) or \((b_1,b_2,c_1,c_2,e)=(-a,a,a,0,e)\), where e may be arbitrary real number. If \(a=0\) we have \((b_1,b_2,c_1,c_2,e)=(0,0,0,0,e)\), where e may be arbitrary. Theorem 5.3 is complete. \(\square \)

Corollary 5.4

If \(m\ge 3\), then the twisted Courant bracket \(\mathcal {M} f_m\)-natural operator from Example 3.2 is the unique \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=3\) satisfying the following conditions:

(C1):

\(A_H(\rho _1, A_H(\rho _2,\rho _3))=A_H(A_H(\rho _1,\rho _2),\rho _3)+A_H(\rho _2,A_H(\rho _1,\rho _3)), \)

(C2):

\(A_H(X\oplus 0,Y\oplus 0)=[X,Y]\oplus i_Xi_YH\)

for all \(\rho _1,\rho _2,\rho _3, X\oplus 0,Y\oplus 0\in \mathcal {X}(M)\oplus \Omega ^1(M)\), all closed \(H\in \Omega _{cl}^3(M)\) and all m-manifolds M.

Proof

Indeed, the condition (C1) and Theorem 5.3 imply that \(A=A^{\left<1,a\right>}\) or \(A=A^{\left<2,a\right>}\) or \(A=A^{\left<3,a\right>}\) or \(A=A^{\left<4,a,e\right>}\) for some real numbers a and e. Then (C2) implies that \(A=A^{\left<4,a,e\right>}\) and \(a=1\) and \(e=1\) because \(A_H^{\left<1,a\right>}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus 0\) and \(A_H^{\left<2,a\right>}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus 0\) and \(A_H^{\left<3,a\right>}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus 0\) and \(A^{\left<4,a,e\right>}_H(X\oplus 0,Y\oplus 0) =a[X,Y]\oplus ei_Xi_YH\). \(\square \)

Corollary 5.5

If \(m\ge 3\), any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=3\) such that \(A_H\) is a Lie algebra bracket (i.e., it is skew-symmetric, bilinear and satisfying the Leibniz rule) for all closed 3-forms \(H\in \Omega ^3_{cl}(M)\) and all m-manifolds M is one of the \(\mathcal {M} f_m\)-natural operators:

$$\begin{aligned} A^{\left<1,a\right>}_H(\rho _1,\rho _2)=&{} a[X^1,X^2]\oplus 0 ,\\ A^{\left<2,a\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a(\mathcal {L}_{X^1}\omega ^2-\mathcal {L} _{X^2}\omega ^1)), \\ A^{\left<4,0,e\right>}_H(\rho ^1,\rho ^2)=&{} 0\oplus ei_{X^1}i_{X^2}H, \end{aligned}$$

where \(\rho ^1=X^1\oplus \omega ^1\) and \(\rho ^2=X^2\oplus \omega ^2\), and a and e are arbitrary real numbers.

Proof

It follows from Theorem 5.3. \(\square \)

Corollary 5.6

If \(m\ge 3\), any \(\mathcal {M} f_m\)-natural operator A in the sense of Definition 3.1 for \(p=3\) satisfying the Leibniz rule for all 3-forms H (or for all closed 3-forms and at least one non-closed 3-form) is one of the \(\mathcal {M} f_m\)-natural operators:

$$\begin{aligned} A^{\left<1,a\right>}_H(\rho _1,\rho _2)=&{} a[X^1,X^2]\oplus 0 ,\\ A^{\left<2,a\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a(\mathcal {L}_{X^1}\omega ^2-\mathcal {L} _{X^2}\omega ^1)),\\ A^{\left<3,a\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a\mathcal {L}_{X^1}\omega ^2), \\ A^{\left<4,a,0\right>}_H(\rho ^1,\rho ^2)=&{} a[X^1,X^2]\oplus (a(\mathcal {L}_{X^1}\omega ^2-i_{X^2}\mathrm {d}\omega ^1)),\\ A^{\left<4,0,e\right>}_H(\rho ^1,\rho ^2)=&{} 0\oplus ei_{X^1}i_{X^2}H,\end{aligned}$$

where \(\rho ^1=X^1\oplus \omega ^1\) and \(\rho ^2=X^2\oplus \omega ^2\), and a and e are arbitrary real numbers.

Proof

It follows from Theorem 5.3 and its proof. \(\square \)

Remark 5.7

It is well-known that given closed 3-form \(H\in \Omega ^3_{cl}(M)\) on a m-manifold M, the twisted Courant bracket \([-,-]_H:(\mathcal {X}(M)\oplus \Omega ^1(M))\times (\mathcal {X}(M)\oplus \Omega ^1(M))\rightarrow \mathcal {X}(M)\oplus \Omega ^1(M)\) is bilinear and satisfies the properties (A1)–(A5) from Corollary 2.8 for all \(\rho _1,\rho _2,\rho _3\in \mathcal {X}(M)\oplus \Omega ^1(M)\) and all \(f\in \mathcal {C}^\infty (M)\), see [3, 8], but \([-,-]_H\not =[-,-]_0\) if \(H\not =0\). Is it a contradiction with the uniqueness from Corollary 2.8? No, it is not. Indeed, \([-,-]_H\) is not extendable to a \(\mathcal {M} f_m\)-natural bilinear operator in the sense of Definition 2.1 because it is invariant only with respect to \(\mathcal {M} f_m\)-maps \(\varphi :M\rightarrow M\) preserving H, in fact.

Remark 5.8

By Corollary 5.5, given a closed 3-form H on M, the skew-symmetric bracket \([[X^1\oplus \omega ^1,X^2\oplus \omega ^2]]^{(H)}: =0\oplus i_{X^1}i_{X^2}H\) satisfies the Leibniz rule. One can easily directly verify that \((TM\oplus T^*M,e[[-,-]]^{(H)},0\pi )\) for arbitrary fixed \(e\in \mathbf {R}\) and closed 3-form H is a Lie algebroid canonically depending on H. So, if we have a closed 3-form H on a m-manifold M, we can construct canonical (in H) Lie algebroids \((EM, [[-,-]]^{[H]}, a^{[H]})\) with \(EM=TM\oplus T^*M\) different than the one from Proposition 2.11.