Skip to main content
Log in

Existence of Solutions for a Class of Fractional Boundary Value Equations with Impulsive Effects via Critical Point Theory

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of weak solutions for a class of fractional boundary value equations with impulsive effects. Existence results are obtained using the variational methods and the critical point theory. Our theorems mainly extend the recent results of Wang et al. (Mediterr J Math 13(6): 4845–4866, 2016). Finally, some examples are presented to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diethelm, K., Freed, A.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)

    Google Scholar 

  2. Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)

    Article  Google Scholar 

  3. Glockle, W., Nonnenmacher, T.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Mainardi, F.: Fractional calculus, some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien (1997)

    Chapter  Google Scholar 

  6. Kirchner, J., Feng, X., Neal, C.: Fractal streamchemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  7. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  8. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Samko, S., Kilbas, A., Marichev, O.: Fractional Integral and Derivatives, Theory and Applications. Gordon and Breach, Longhorne (1993)

    MATH  Google Scholar 

  11. Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  12. Benson, D., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  13. Fix, G., Roop, J.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erwin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 58–76 (2006)

    MathSciNet  Google Scholar 

  15. Lakshmikantham, V., Vatsala, A.: Basic theory of fractional differential equations. Nonlinear Anal. TMA 69, 2677–2682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Devi, J., Lakshmikantham, V.: Nonsmooth analysis and fractional differential equations. Nonlinear Anal. TMA 70, 4151–4157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. TMA 71, 2724–2733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. TMA 71, 3249–3256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. RWA 11, 4465–4475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. RWA 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nieto, J.: Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett. 23, 940–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Agarwal, R., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, S.: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59, 1300–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nyamoradi, N.: Existence and multiplicity of solutions for impulsive fractional differential equations. Mediterr. J. Math 14, 85 (2017). https://doi.org/10.1007/s00009-016-0806-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Li, Y., Zhou, J.: Solvability of boundary value problems for impulsive fractional differential equations via critical point theory. Mediterr. J. Math. 13(6), 4845–4866 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bai, C.: Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Elect. J. Differ. Equat. 176, 1–9 (2012)

    MathSciNet  Google Scholar 

  27. Bonanno, G., Rodriguez-Löpez, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodriguez-Löpez, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1016–1038 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Brézis, H., Nirenberg, L.: Remarks on finding critical points. Commun. Pure Appl. Math. 44, 939–963 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, vol. 65. Washington, DC: American Mathematical Society (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemat Nyamoradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyamoradi, N., Tayyebi, E. Existence of Solutions for a Class of Fractional Boundary Value Equations with Impulsive Effects via Critical Point Theory. Mediterr. J. Math. 15, 79 (2018). https://doi.org/10.1007/s00009-018-1122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1122-z

Mathematics Subject Classification

Keywords

Navigation