Quasi-Fredholm and Semi-B-Fredholm Linear Relations



Quasi-Fredholm and semi-B-Fredholm linear relations in Banach spaces are defined in terms of conditions on their ranges and null spaces. We analyze the behavior of the powers of such linear relations and prove that these classes of linear relations define a spectrum that satisfies the polynomial spectral mapping property. Our results are used to calculate the quasi-Fredholm and the semi-B-Fredholm spectra of some linear relations.


Quasi-Fredholm linear relation semi-B-Fredholm linear relation polynomial spectral mapping theorem 

Mathematics Subject Classification



  1. 1.
    Aiena, P.: Fredholm and local spectral theory with applications to multipliers. Kluwer Academic Publishers, Dordrecht (2004)MATHGoogle Scholar
  2. 2.
    Álvarez, T.: Perturbation theorems for upper and lower semi-Fredholm linear relations. Publ. Math. Debrecen. 65(1–2), 179–191 (2004)MathSciNetMATHGoogle Scholar
  3. 3.
    Álvarez, T.: On regular linear relations. Acta Math. Sinica (English Ser.) 28(1), 183–194 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Álvarez, T.: Small perturbation of normally solvable relations. Publ. Math. Debrecen. 80(1–2), 155–168 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Álvarez, T., Ammar, A., Jeribi, A.: On the essential spectra of some matrix of linear relations. Math. Methods Appl. Sci. 37(5), 620–644 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baloudi, H., Jeribi, A.: Left-right Fredholm and Weyl spectra of the sum of two bounded operators and applications. Mediterr. J. Math. 11(3), 939–953 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baskakov, A.G., Chernyshov, K.I.: Spectral analysis of linear relations and degenerate operator semigroups. Sb. Math. 193(11), 1573–1610 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Berkani, M., Ouahab, A.: Theoreme de l’application spectrale pour le espectre essentiel quasi-Fredholm. Proc. Am. Math. Soc. 125(3), 763–774 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Berkani, M.: On a class of quasi-Fredholm operators. Integr. Equ. Oper. Theory. 34, 244–249 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Berkani, M.: Restriction of an operator to the range of its powers. Studia Math. 140(2), 163–175 (2000)MathSciNetMATHGoogle Scholar
  11. 11.
    Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130(6), 1717–1723 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Berkani, M., Sarih, M.: On semi-B-Fredholm operators. Glasgow Math. J. 43, 457–465 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Berkani, M., Castro-González, N.: Unbounded B-Fredholm operators on Hilbert spaces. Proc. Edinburgh Math. Soc. 51, 285–296 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Berkani, M.: On the B-Fredholm alternative. Mediterr. J. Math. 10, 1487–1496 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Carpintero, C.R., García, O., Rosas, E.R., Sanabria, J.E.: B-Browder spectra and localized SVEP. Rend. Cir. Mat. Palermo. 57, 239–254 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cross, R.W.: Multivalued linear operators. Marcel Dekker, New York (1998)MATHGoogle Scholar
  17. 17.
    Cross, R.W., Favini, A., Yakukov, Y.: Perturbation results for multivalued linear operators, Prog. Nonlinear Differential Equations Appl. Birkhäuser/Springer Basel AG, Basel. 80,111–130 (2011)Google Scholar
  18. 18.
    Chafai, E., Mnif, M.: Spectral mapping theorem for ascent, essential ascent, descent and essential descent spectrum of linear relations. Acta Math. Scientia (English Ser.) 34B(4), 1–13 (2014)MathSciNetMATHGoogle Scholar
  19. 19.
    Chamkha, Y., Mnif, M.: Browder spectra of upper triangular matrix linear relations. Publ. Math. Debrecen. 82, 569–590 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chamkha, Y., Mnif, M.: The class of B-Fredholm linear relations. Complex Anal. Oper. Theory. 9, 1681–1699 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fakhfakh, F., Mnif, M.: Perturbation theory for lower semi-Browder multivalued linear operators. Publ. Math. Debrecen. 78, 595–606 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Goldberg, S.: Unbounded linear operators: theory and applications. McGraw-Hill, New York (1966)MATHGoogle Scholar
  23. 23.
    Jeribi, A., Moalla, N., Yengui, S.: S-essential spectra and application to an example of transport operators. Math. Methods Appl. Sci. 37(16), 2341–2353 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kaczynski, T.: Multivalued maps as a tool in modeling and rigorous numerics. J. Fixed Point Theory Appl. 4, 151–176 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Labrousse, J-Ph: Les operateurs quasi-Fredholm: une generalisation des operateurs semi-Fredholm. Rend. Circ. Mat. Palermo. 29(2), 161–258 (1980)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Labrousse, J.-P.H., Sandovici, A., A, de Snoo, H.S.V., Winkler, H.: The Kato decomposition of quasi-Fredholm relations, Oper. Matrices. 4 (2010) 1-51Google Scholar
  27. 27.
    Latrach, K., Jeribi, A.: Some results on Fredholm operators, essential spectra, and application. J. Math. Anal. Appl. 225, 73–89 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Latrach, K., Dehici, A.: Relatively strictly singular perturbations, essential spectra, and application to transport operators. J. Math. Anal. Appl. 252, 767–789 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Latrach, K., Martin Paoli, J.: Relatively compact-like perturbations, essential spectra and application. J. Aust. Math. Soc. 77, 73–89 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mbekhta, M., Müller, V.: On the axiomatic theory of spectrum II. Studia Math. 119, 129–147 (1996)MathSciNetMATHGoogle Scholar
  31. 31.
    Müller, V.: On the Kato decomposition of quasi-Fredholm operators and B-Fredholm operators. Proc. Worksop Geometry in Functional Analysis Erwin Schrodinger Institute, Wien (2000)Google Scholar
  32. 32.
    Miller, T.L., Miller, V.G., Smith, R.C.: Bishop’s property \((\beta )\) and Cesaro operator. J. Lond. Math. Soc. 58, 197–207 (1998)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sandovici, A.: Some basic properties of polynomials in a linear relation in linear spaces. Oper. Theory Adv. Appl. Birkhäuser, Basel. 175:231–240 (2007)Google Scholar
  34. 34.
    Sandovici, A., de Snoo, H.S.V., Winkler, H.: Ascent, descent, nullity, defect and related notions for linear relations in linear spaces. Linear Algebra Appl. 423, 456–497 (2007)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sandovici, A., de Snoo, H.S.V.: An index formula for the product of linear relations. Linear Algebra Appl. 431, 2160–2171 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OviedoOviedoSpain

Personalised recommendations