Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 4679–4691 | Cite as

Multiple Solutions for Nonhomogeneous Elliptic Equations Involving Critical Caffarelli–Kohn–Nirenberg Exponent

  • S. Benmansour
  • A. Matallah


In this paper, we consider a nonhomogeneous singular elliptic equation involving a critical Caffarelli–Kohn–Nirenberg exponent. Using Ekeland’s Variational Principle, the Mountain Pass Lemma and the Nehari manifold, we establish the existence of at least two solutions.


Variational methods critical Caffarelli–Kohn–Nirenberg exponent singular weights Nehari manifold Palais–Smale condition 

Mathematics Subject Classification

35A15 35B25 35B33 35J60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc 88, 486–490 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math 36, 437–477 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen Y., Chen J.: Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity. Nonlinear Anal. 130, 121–137 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caffarelli L., Kohn R., Nirenberg L.: First order interpolation inequality with weights. Compos. Math. 53, 259–275 (1984)MathSciNetMATHGoogle Scholar
  5. 5.
    Catrina F., Wang Z.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math 54, 229–257 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen J., Rocha E.M.: Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term. Nonlinear Anal. 71, 4739–4750 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chou K.S., Chu C.W.: On the best constant for a weighted Sobolev–Hardy Inequality. J. Lond. Math. Soc. 2, 137–151 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Felli V., Schneider M.: Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type. J. Differ. Equ. 191, 121–142 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jannelli E.: The role played by space dimension in elliptic critical problems. J. Differ. Equ. 156, 407–426 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jannelli E., Loiudice A.: Critical polyharmonic problems withsingular nonlinearities. Nonlinear Anal. 110, 77–96 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kang D., Deng Y., Peng S.: Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev–Hardy. Nonlinear Anal. 60, 729–753 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tarantello G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré 9, 281–304 (1992)MathSciNetMATHGoogle Scholar
  13. 13.
    Xuan B., Su S., Yan Y.: Existence results for Brezis–Nirenberg problems with Hardy potential and singular coefficients. Nonlinear Anal. 67, 2091–2106 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Laboratoire des Systèmes Dynamiques et Applications, Département de MathématiquesUniversité Aboubekr Belkaid TlemcenTlemcenAlgeria

Personalised recommendations