Skip to main content
Log in

Upper Bound of Second Hankel Determinant for Bi-Bazilevi Functions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A function is said to be bi-Bazilevi in the open unit disk U if both the function and its inverse are Bazilevi there. Making use of the Hankel determinant, in this work, we obtain coefficient expansions for Bi-Bazilevi functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altınkaya Ş., Yalçın S.: Coefficient bounds for a subclass of bi-univalent functions. TWMS J. Pure Appl. Math. 6(2), 180–185 (2015)

    MATH  Google Scholar 

  2. Altınkaya, Ş., Yalçın, S.: Fekete-Szegö inequalities for certain classes of bi-univalent functions. International Scholarly Research Notices, Article ID 327962, p 6 (2014)

  3. Altınkaya, Ş., Yalçın, S.: Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points. Journal of Function Spaces, Article ID 145242, p 5 (2015)

  4. Altınkaya Ş., Yalçın S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris, Ser. I 353, 1075–1080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevic I.E.: On a case of integrability in quadratures of the Loewner-Kufarev equation. Matematicheskii Sbornik 37(79), 471–476 (1955)

    MathSciNet  Google Scholar 

  6. Brannan D.A., Clunie J.: Aspects of contemporary complex analysis. Proceedings of the NATO Advanced Study Instute Held at University of Durham. Academic Press, New York (1979)

    Google Scholar 

  7. Brannan D.A., Taha T.S.: On some classes of bi-univalent functions. Studia Universitatis Babeş-Bolyai, Mathematica 31(2), 70–77 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Bulut S.: Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Acad. Sci. Paris, Ser. I 352(6), 479–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deniz E., Çağlar M., Orhan H.: Second Hankel determinant for bi-starlike and bi-convex functions of order \({\beta }\). Appl. Math. Comput. 271, 301–307 (2015)

    MathSciNet  Google Scholar 

  10. Duren, P.L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Springer 259, New York (1983)

  11. Fekete M., Sezegö G.: Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 2, 85–89 (1933)

    Article  MATH  Google Scholar 

  12. Frasin B.A., Aouf M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grenander U., Szegö G.: Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. Univ. California Press, Berkeley (1958)

    MATH  Google Scholar 

  14. Hamidi S.G., Jahangiri J.M.: Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris, Ser. I 352(1), 17–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayami T., Owa S.: Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 4(52), 2473–2585 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Jahangiri, J.M., Hamidi, S.G.: Coefficient estimates for certain classes of bi-univalent functions. International Journal of Mathematics and Mathematical Sciences. Article ID 190560, p 4 (2013)

  17. Lewin M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Magesh N., Yamini J.: Coefficient bounds for a certain subclass of bi-univalent functions. Int. Mathe. Forum 8(27), 1337–1344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Netanyahu E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \({\left\vert z\right\vert < 1,}\). Arch. Ration. Mech. Anal. 32, 100–112 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Noonan J.W., Thomas D.K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 223(2), 337–346 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Noor K.I.: Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl. 28(c), 731–739 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Orhan, H., Magesh, N., Balaji, V.K.: Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions. Afrika Matematika 1–9 (2015)

  23. Pommerenke C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  24. Srivastava H.M., Mishra A.K., Gochhayat P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23(10), 1188–1192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu Q.H., Gui Y.C., Srivastava H.M.: Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25, 990–994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zaprawa P.: On Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 21, 169–178 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şahsene Altınkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altınkaya, Ş., Yalçın, S. Upper Bound of Second Hankel Determinant for Bi-Bazilevi Functions. Mediterr. J. Math. 13, 4081–4090 (2016). https://doi.org/10.1007/s00009-016-0733-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0733-5

Mathematics Subject Classification

Keywords

Navigation