Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 4001–4017 | Cite as

A New Recurrence Relation and Related Determinantal form for Binomial Type Polynomial Sequences



For polynomial sequence of binomial type we propose a new recurrence formula equivalent to a determinantal form of the sequence, from which known and unknown properties are deducted. Relationships whit \({\delta}\)–functionals, \({\delta}\)–operators and generating function are pointed out. Finally, some classical examples are studied, highlighting interesting determinantal identities.


Binomial polynomials determinant 

Mathematics Subject Classification

11B83 65F40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agratini O.: Binomial polynomials and their applications in Approximation Theory. Conferenze del Seminario di Matematica dell’Università di Bari 281, 1–22 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Appell P.: Sur une classe de polynomes. Ann. Sci. de l’E.N.S. 2(9), 119–144 (1880)MathSciNetGoogle Scholar
  3. 3.
    Bell E.T.: Invariant sequences. Proc. Nat. Acad. Sci 14, 901–904 (1928)CrossRefMATHGoogle Scholar
  4. 4.
    Costabile F.A.: On expansion of a real function in Bernoulli polynomials and application. Conferenze del Seminario di Matemematica dell’Università di Bari 273, 1–16 (1999)MathSciNetMATHGoogle Scholar
  5. 5.
    Costabile F., Dell’Accio F., Gualtieri M.I.: A new approach to Bernoulli polynomials. Rend. Mat. Appl. 26(7), 1–12 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Costabile F.A., Longo E.: A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 234(5), 1528–1542 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Costabile F.A., Longo E.: The Appell interpolation problem. J. Comput. Appl. Math. 236, 1024–1032 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Costabile, F. A.; Longo, E.: Algebraic theory of Appell polynomials with application to general linear interpolation problem. In: Yasser, A. (ed.) Linear Algebra, InTech Europe Publication, Rijeka, pp. 21–46 (2012)Google Scholar
  9. 9.
    Costabile F.A., Longo E.: \({\Delta_{h}}\)–Appell sequences and related interpolation problem. Numer. Algorithms 63(1), 165–186 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Costabile F.A., Longo E.: An algebraic approach to Sheffer polynomial sequences. Integral Trans. Spec. Funct. 25(4), 295–311 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Costabile F.A., Longo E.: An algebraic exposition of umbral calculus with application to general linear interpolation problem—a survey. Publications de l’Institut Mathematique 96(110), 67–83 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Costabile, F. A.; Longo, E.: Umbral interpolation. Submitted to Publications de l’Institut MathematiqueGoogle Scholar
  13. 13.
    Costabile F.A., Napoli A.: A special class of polynomials related to non classic general interpolatory problems. Integral Trans. Spec. Funct. 20(7), 539–550 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Costabile F.A., Napoli A.: Special even polynomials and related interpolatory problems. Integral Trans. Spec. Funct. 21(3), 183–196 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Costabile F.A., Serpe A.: An algebraic approach to lidstone polynomials. Appl. Math. Lett. 20(4), 387–390 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Davis P.J.: Interpolation & Approximation. Dover Publication, Inc., New York (1975)MATHGoogle Scholar
  17. 17.
    Deutsch E., Ferrari L., Rinaldi S.: Production matrices and Riordan arrays. Ann. Comb. 13, 63–83 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Di Bucchianico A.: Probabilistic and Analytical Aspects of the Umbral Calculus, vol. 119, CWI Tract Series. CWI, Amsterdam (1997)MATHGoogle Scholar
  19. 19.
    Di Bucchianico A., Loeb D.: Sequences of binomial type with persistent roots. J. Math. Anal. Appl. 199(1), 39–58 (1996)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Di Bucchianico A., Loeb D.: A selected survey of umbral calculus. Electronic J. Comb. Dyn. Survey DS 3, 1–34 (2000)MATHGoogle Scholar
  21. 21.
    Farouki R.T., Rajan V.T.: On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Des. 4(3), 191–216 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fillmore J.P., Williamson S.G.: A linear algebra setting for the Rota–Mullin theory of polynomials of binomial type. Linear Multilinear Algebra 1, 67–80 (1973)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Garsia A.M.: An exposé of the Mullin–Rota theory of polynomials of binomial type. Linear Multilinear Algebra 1, 47–65 (1973)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Higham N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)MATHGoogle Scholar
  25. 25.
    Jordan C.: Calculus of Finite Differences. Chealsea Pub. Co., New York (1965)MATHGoogle Scholar
  26. 26.
    Khan S., Riyasat M.: A determinantal approach to ShefferAppell polynomials via monomiality principle. J. Math. Anal. Appl. 421(1), 806–829 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Luzón A., Merlini D., Morón M.A., Sprugnoli R.: Complementary Riordan arrays. Discret. Appl. Math. 172, 75–87 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Markowsky G.: Differential operators and the theory of binomial enumeration. J. Math. Anal. Appl. 63(1), 145–155 (1978)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Młotkowski W., Romanowicz A.: A family of sequences of binomial type. Probab. Math. Stat. 33(2), 401–408 (2013)MathSciNetMATHGoogle Scholar
  30. 30.
    Mullin, R.; Rota, G.C.: On the foundations of combinatorial theory III. Theory of binomial enumeration. In: Harris, B. (ed.), Graph Theory and its Applications. Academic Press, Cambridge 1970, pp. 167–213Google Scholar
  31. 31.
    Roman S., Rota G.: The Umbral calculus. Adv. Math. 27, 95–188 (1978)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shapiro L.W., Getu S., Woan W.J., Woodson L.: The Riordan group. Discret. Appl. Math. 34, 229–239 (1991)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sheffer I.M.: Some properties of polynomial sets of type zero. Duke Math. J. 5(3), 590–622 (1939)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tempesta P.: On Appell sequences of polynomials of Bernoulli and Euler type. J. Math. Model. Algorithms 341, 1295–1310 (2008)MathSciNetMATHGoogle Scholar
  35. 35.
    Tempesta P.: The Lazard formal group, universal congruences and special values of zeta functions. Trans. Am. Math. Soc. 367(10), 7015–7028 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Yang Y., Youn H.: Appell polynomial sequences: a linear algebra approach. JP J. Algebra Number Theory Appl. 13(1), 65–98 (2009)MathSciNetMATHGoogle Scholar
  37. 37.
    Yang S.L.: Recurrence relations for the Sheffer sequences. Linear Algebra Appl. 437(12), 2986–2996 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Youn, H.; Yang, Y.: Differential equation and recursive formulas of Sheffer polynomial sequences. ISRN Discrete Mathematics 2011, pp. 16 (Article ID 476462) (2011)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CalabriaRendeItaly

Personalised recommendations