Skip to main content
Log in

Fractal Jacobi Systems and Convergence of Fourier–Jacobi Expansions of Fractal Interpolation Functions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The fractal interpolation function (FIF) is a special type of continuous function on a compact subset of \({\mathbb{R}}\) interpolating a given data set. They have been proved to be a very important tool in the study of irregular curves arising from financial series, electrocardiograms and bioelectric recording in general as an alternative to the classical methods. It is well known that Jacobi polynomials form an orthonormal system in \({\mathcal{L}^{2}(-1,1)}\) with respect to the weight function \({\rho^{(r,s)}(x)=(1-x)^{r} (1+x)^{s}}\), \({r > -1}\) and \({s > -1}\). In this paper, a fractal Jacobi system which is fractal analogous of Jacobi polynomials is defined. The Weierstrass type theorem providing an approximation for square integrable function in terms of \({\alpha}\)-fractal Jacobi sum is derived. A fractal basis for the space of weighted square integrable functions \({\mathcal{L}_{\rho}^{2}(-1,1)}\) is found. The Fourier–Jacobi expansion corresponding to an affine FIF (AFIF) interpolating certain data set is considered and its convergence in uniform norm and weighted-mean square norm is established. The closeness of the original function to the Fourier–Jacobi expansion of the AFIF is proved for certain scale vector. Finally, the Fourier–Jacobi expansion corresponding to a non-affine smooth FIF interpolating certain data set is considered and its convergence in uniform norm and weighted-mean square norm is investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agakhanov S.A., Natanson G.I.: The approximation of functions by the Fourier–Jacobi sums. Dokl. Akad. Nauk. 166, 9–10 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Barnsley M.F.: Fractal functions and interpolation. Constr. Approx. 2(4), 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley M.F.: Fractal Everywhere. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  4. Barnsley M.F.: The calculus of fractal interpolation functions. J. Approx. Theory 57, 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnsley M.F., Elton J., Hardin D., Massopust P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belenkii A.M.: Uniform convergence of the FouriervJacobi series on the orthogonality segment. Math. Notes 46, 901–906 (1989)

    Article  MathSciNet  Google Scholar 

  7. Berezansky, Y.M., Kalyuzhnyi, A.A.: Harmonic Analysis in Hypercomplex Systems. Mathematics and Its Applications, Springer (2010)

  8. Carothers N.L.: A Short Course on Banach Space Theory. London Mathematical Society Student Texts, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Chand A.K.B., Kapoor G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44, 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chand A.K.B., Kapoor G.P.: Smoothness analysis of coalescence hidden variable fractal interpolation functions. Int. J. Nonlinear Sci. 3(1), 15–26 (2007)

    MathSciNet  Google Scholar 

  11. Chand A.K.B., Navascues M.A.: Natural bicubic spline fractal interpolation. Nonlinear Anal. 69, 3679–3691 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chand A.K.B., Navascues M.A.: Generalized Hermite fractal interpolation. Rev. R. Acad. Cienc. Exactas Ffs. Qufm. Nat. Zaragoza. 64(2), 107–120 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Cheney E.: Approximation Theory. AMS, Providence (1966)

    MATH  Google Scholar 

  14. Daugavet, I.K.: Introduction to Function Approximation Theory. Leningrad State University (1977)

  15. Heil, C.: A Basis Theory Primer. In: Appl. Numer Harm. Analysis. Birkhauser, Boston (2011)

  16. Higgins J.R.: Completeness and Basis Properties of Sets of Special Functions. University Press, Cambridge (1977)

    Book  MATH  Google Scholar 

  17. Johnson D., Johnson J.: Low-pass filters using ultraspherical polynomials. IEEE Trans. Circuit Theory 13, 364–369 (1966)

    Article  Google Scholar 

  18. Kvernadze G.: Uniform convergence of Fourier–Jacobi series. J. Approx. Theory 117, 207–228 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Motornyi V.P., Goncharov S.V., Nitiema P.K.: On the mean convergence of Fourier–Jacobi series. Ukr. Math. J. 62(6), 943–960 (2010)

    Article  MathSciNet  Google Scholar 

  20. Navascues M.A.: Fractal polynomial interpolation. Z. Anal. Anwend 25, 401–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Navascues M.A.: Fractal trigonometric approximation. Electron Trans. Numer. Anal. 20, 64–74 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Navascues M.A.: Non-smooth polynomials. Int. J. Math. Anal. 1, 159–174 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Navascues M.A.: Fractal interpolants on the unit circle. Appl. Math. Lett. 21(4), 366–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Navascues M.A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Navascues M.A.: Reconstruction of sampled signals with fractal functions. Acta Appl. Math. 110(3), 1199–1210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Navascues M.A.: Fractal Haar system. Nonlinear Anal. 74(12), 4152–4165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Navascues M.A.: Fractal bases of \({\mathcal{L}^{p}}\) spaces. Fractals 20(2), 141–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Navascues M.A., Chand A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100(3), 247–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Navascues, M.A., Sebastian, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 1–20 (2006)

  30. Navascues M.A., Sebastian M.V.: Legendre transform of sampled signals by fractal methods. Monogr. Mat. Garcfa Galdeano. 37, 181–188 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Pavlovic V.D.: Least-Square low-pass filters using Chebyshev polynomials. Int. J. Electroni. 53(4), 371–379 (1982)

    Article  Google Scholar 

  32. Prasad J., Hayashi H.: On the uniform convergence of Fourier–Jacobi series. SIAM J Numer. Anal. 10(1), 23–27 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suetin, P.K.: Classical Orthogonal Polynomial. 2nd rev. edn. Nauka, Moscow (1979)

  34. Szego, G.: Orthogonal Polynomial, vol. 23. AMS Colloquium Publications (2003)

  35. Viswanathan P., Chand A.K.B.: \({\alpha}\)-fractal rational splines for constrained interpolation. Electron Trans. Numer. Anal. 41, 1–23 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nasim Akhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.N., Guru Prem Prasad, M. & Navascués, M.A. Fractal Jacobi Systems and Convergence of Fourier–Jacobi Expansions of Fractal Interpolation Functions. Mediterr. J. Math. 13, 3965–3984 (2016). https://doi.org/10.1007/s00009-016-0727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0727-3

Mathematics Subject Classification

Keywords

Navigation