Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 3921–3937 | Cite as

Fixed Points of Sequence of Ćirić Generalized Contractions of Perov Type

  • Dejan Ilić
  • Marija Cvetković
  • Ljiljana Gajić
  • Vladimir Rakočević


Perov used the concept of vector valued metric space and obtained a Banach type fixed point theorem on such a complete generalized metric space. In this article, we study fixed point results for the new extensions of sequence of Ćirić generalized contractions on cone metric space, and we give some generalized versions of the fixed point theorem of Perov. The theory is illustrated with some examples. It is worth mentioning that the main result in this paper could not be derived from Ćirić’s result by the scalarization method, and hence indeed improves many recent results in cone metric spaces.


Fixed point sequence of mappings Ćirić generalized contraction Perov type contraction 

Mathematics Subject Classification

47H10 54H25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbas M., Jungck G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 341, 416–420 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abbas M., Rhoades B.E.: Fixed and periodic point results in cone metric spaces. Appl. Math. Lett. 22, 511–515 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bari, C.D., Vetro, P.: \({\varphi}\)-Pairs and Common Fixed Points in Cone Metric Space. Rendiconti del Circolo Matematico di Palermo 57, 279–285 (2008)Google Scholar
  4. 4.
    Di Bari C., Vetro P.: Nonlinear quasi-contractions of Ćirić type. Fixed Point Theory 13, 453–459 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Cvetković M., Rakočević V.: Exstensions of Perov theorem. Carpathian J. Math. 31, 181–188 (2015)MathSciNetMATHGoogle Scholar
  6. 6.
    Cvetković M., Rakočević V.: Quasi-contraction of Perov type. Appl. Math. Commun. 237, 712–722 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cvetković M., Rakočević V.: Fisher quasi-contraction of Perov type. Nonlinear Convex Anal. 16, 339–352 (2015)MathSciNetMATHGoogle Scholar
  8. 8.
    Ćirić, Lj.B.: On a family of contractive maps and fixed points. Publ. de l’Inst. Math. 17(31), 45–51 267273 (1974)Google Scholar
  9. 9.
    Deimling K.: Nonlinear Functional Analysis. Springer, New York (1985)CrossRefMATHGoogle Scholar
  10. 10.
    Du W.: A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. 72, 2259–2261 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gajić L., Rakočević V.: Quasi-contractions on a non-normal cone metric space. Funct. Anal. Appl. 46, 62–65 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Huang L.G., Zhang X.: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1468–1476 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Janković S., Kadelburg Z., Radenović S.: On cone metric spaces: a survey. Nonlinear Anal. 74, 2591–2601 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jiang, S., Li, Z.: Extensions of Banach contraction principle to partial cone metric spaces over a non-normal solid cone. Fixed Point Theory Appl. 2013, 250 (2013)Google Scholar
  15. 15.
    Jungck, G., Radenović, S., Radojević, S., Rakočević, V.: Common fixed point theorems for weakly compatible pairs on cone metric spaces. Fixed Point Theory Appl. 2009, Article ID 643840 (2009)Google Scholar
  16. 16.
    Liu, H., Xu, S.: Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)Google Scholar
  17. 17.
    Liu H., Xu, S.: Fixed point theorems of quasicontractions on cone metric spaces with banach algebras. Abstract Appl. Anal. Article ID 187348 (2013) doi: 10.1155/2013/187348
  18. 18.
    Perov A.I.: On Cauchy problem for a system of ordinary diferential equations (in Russian). Priblizhen. Metody Reshen. Differ. Uravn. 2, 115–134 (1964)MathSciNetGoogle Scholar
  19. 19.
    Perov A.I., Kibenko A.V.: On a certain general method for investigation of boundary value problems (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 30, 249–264 (1966)MathSciNetGoogle Scholar
  20. 20.
    Rezapour S., Hamlbarani R.: Some notes on the paper ”Cone metric spaces and fixed point theorems of contractive mappings”. J. Math. Anal. Appl. 345, 719–724 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Veazpour, S.M., Raja, P.: Some extensions of Banach’s contraction principle in complete cone metric spaces. Fixed Point Theory Appl. Volume 2008, Article ID 768294, p. 11. doi: 10.1155/2008/768294
  22. 22.
    Zima M.: A certain fixed point theorem and its applications to integral-functional equations. Bull. Austral. Math. Soc. 46, 179–186 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Dejan Ilić
    • 1
  • Marija Cvetković
    • 1
  • Ljiljana Gajić
    • 2
  • Vladimir Rakočević
    • 1
  1. 1.Department of Mathematics, Faculty of Sciences and MathematicsUniversity of NišNišSerbia
  2. 2.Department of Mathematics and Informatics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations