Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 3887–3906

# Fractional Calculus on Fractal Interpolation for a Sequence of Data with Countable Iterated Function System

• A. Gowrisankar
• R. Uthayakumar
Article

## Abstract

In recent years, the concept of fractal analysis is the best nonlinear tool towards understanding the complexities in nature. Especially, fractal interpolation has flexibility for approximation of nonlinear data obtained from the engineering and scientific experiments. Random fractals and attractors of some iterated function systems are more appropriate examples of the continuous everywhere and nowhere differentiable (highly irregular) functions, hence fractional calculus is a mathematical operator which best suits for analyzing such a function. The present study deals the existence of fractal interpolation function (FIF) for a sequence of data $${\{(x_n,y_n):n\geq 2\}}$$ with countable iterated function system, where $${x_n}$$ is a monotone and bounded sequence, $${y_n}$$ is a bounded sequence. The integer order integral of FIF for sequence of data is revealed if the value of the integral is known at the initial endpoint or final endpoint. Besides, Riemann–Liouville fractional calculus of fractal interpolation function had been investigated with numerical examples for analyzing the results.

## Keywords

Attractor countable iterated function system fractal interpolation function fractional calculus

## Mathematics Subject Classification

28A80 26A33 41A05

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Mandelbrot B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983)
2. 2.
Hutchinson J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 313–747 (1981)
3. 3.
Barnsley M.F.: Fractals Everywhere. 2nd edn. Academic Press, USA (1993)
4. 4.
Barnsley M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)
5. 5.
Barnsley M.F., Harrington A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57, 14–34 (1989)
6. 6.
Viswanathan P., Chand A.K.B., Navascues M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419, 804–817 (2014)
7. 7.
Chand A.K.B., Kapoor G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11(3), 277–288 (2003)
8. 8.
Secelean N.A.: The fractal interpolation for countable systems of data, Beograd University, Publikacije. Electrotehn. Fak. ser. Matematika 14, 11–19 (2003)
9. 9.
Secelean N.A.: The existence of the attractor of countable iterated function systems. Mediterr. J. Math. 9, 61–79 (2012)
10. 10.
Uthayakumar R., Gowrisankar A.: Fractals in product fuzzy metric space, fractals, wavelets, and their applications. Springer Proc. Math. Stat. 92, 157–164 (2014)
11. 11.
Uthayakumar R., Gowrisankar A.: Generation of fractals via self-similar group of Kannan iterated function system. Appl. Math. Inf. Sci. 9(6), 3245–3250 (2015)
12. 12.
Massopust, P.R.: Fractal functions. In: Fractal Surfaces and Wavelets. Academic Press, Orlando (1994)Google Scholar
13. 13.
Amo E.D., Carrillo M.D., Sanchez J.F.: PCF self-similar sets and fractal interpolation. Math. Comput. Simul. 92, 28–39 (2013)
14. 14.
Navascues N.A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010)
15. 15.
Miller K.S., Ross B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)
16. 16.
Ross B.: Fractional Calculus and its Applications, Berlin. Springer, Heidelberg (1975)
17. 17.
Tatom F.B.: The relationship between fractional calculus and fractal. Fractals 3(1), 217–229 (1995)
18. 18.
Liang Y.S., Su W.Y.: The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus. Chaos Solitons Fractals 34, 682–692 (2007)
19. 19.
Ruan H.-J., Su W.-Y., Yao K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory 161, 187–197 (2009)
20. 20.
Secelean N.A.: Approximation of the attractor of a countable iterated function system. Gen. Math. 17(3), 221–231 (2009)