Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 3797–3815 | Cite as

Generalized Sasakian Space Forms and Riemannian Manifolds of Quasi Constant Sectional Curvature

  • Avik De
  • Tee-How Loo


In this paper, we show that a generalized Sasakian space form of dimension >3 is either of constant sectional curvature, or a canal hypersurface in Euclidean or Minkowski spaces, or locally a certain type of twisted product of a real line and a flat almost Hermitian manifold, or locally a warped product of a real line and a generalized complex space form, or an \({\alpha}\)-Sasakian space form, or it is of five dimension and admits an \({\alpha}\)-Sasakian Einstein structure. In particular, a local classification for generalized Sasakian space forms of dimension >5 is obtained. A local classification of Riemannian manifolds of quasi constant sectional curvature of dimension >3 is also given in this paper.


Generalized Sasakian space forms generalized complex space forms canal hypersurfaces Riemannian manifolds of quasi constant sectional curvature trans-Sasakian manifolds 

Mathematics Subject Classification

Primary 53C25 53C15 Secondary 53B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alegre P., Blair D.E., Carriazo A.: Generalized Sasakian-space-forms. Isr. J. Math. 141, 157–183 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alegre P., Carriazo A.: Generalized Sasakian space forms and conformal changes of the metric. Results Math. 59, 485–493 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alegre P., Carriazo A.: Structures on generalized Sasakian-space-forms. Differ. Geom. Appl. 26, 656–666 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blair D.E., Vanhecke L.: Symmetries and \({\varphi}\)-symmetric spaces. Tohoku Math. J. 39, 373–383 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boyer C.P., Galicki K.: 3-Sasakian manifolds. Surv. Differ. Geom. 6, 123–184 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen B.Y., Yano K.: Hypersurfaces of a conformally flat space. Tensor N.S. 26, 318–322 (1972)MathSciNetMATHGoogle Scholar
  7. 7.
    Fernández-López, M., García-Río, E., Kupeli, D.N., Ünal, B.: A curvature condition for a twisted product to be a warped product. Manuscr. Math. 106, 213–217 (2001)Google Scholar
  8. 8.
    Falcitelli M.: Locally conformal C 6-manifolds and generalized Sasakian-space-forms. Mediterr. J. Math. 7, 19–36 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Falcitelli M.: A class of almost contact metric manifolds and twisted products. Balk. J. Geom. Appl. 17, 17–29 (2012)MathSciNetMATHGoogle Scholar
  10. 10.
    Ganchev G., Mihova V.: Riemannian manifolds of quasi-constant sectional curvatures. J. Reine Angew. Math. 522, 119–141 (2000)MathSciNetMATHGoogle Scholar
  11. 11.
    Ganchev, G., Mihova, V.: A classifications of Riemannian manifolds of quasi-constant sectional curvatures. arXiv:1105.3081
  12. 12.
    Ghosh A.: Killing vector fields and twistor forms on generalized Sasakian space forms. Mediterr. J. Math. 10, 1051–1065 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kenmotsu K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103 (1972)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kim U.K.: Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms. Note di Mat. 26, 55–67 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kowalski O., Vanhecke L.: Classification of five-dimensional naturally reductive spaces. Math. Proc. Camb. Philos. 97, 445–463 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kowalski O., Wegrzynowski S.: A classification of five-dimensional \({\varphi}\)-symmetric spaces. Tensor N.S. 46, 379–386 (1987)MATHGoogle Scholar
  17. 17.
    Marrero J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Meumertzheim M., Reckziegel H., Schaaf M.: Decomposition of twisted and warped product nets. Results Math. 36, 297–312 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Okumura M.: Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures. Tohoku Math. J. 16, 270–284 (1964)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Okumura M.: Some remarks on spaces with certain contact structure. Tohoku Math. J. 14, 135–145 (1962)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Olszak Z.: On the existence of generalized complex space forms. Isr. J. Math. 65, 214–218 (1989)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    O’Neill, B.: Semi-Riemannian geometry with applications to relatively. In: Pure and Appl. Math. vol. 103. Academic Press, New York (1983)Google Scholar
  23. 23.
    Schouten, J.: Ricci-Calculus. Springer, Berlin (1954)Google Scholar
  24. 24.
    Tricerri F., Vanhecke L.: Curvature tensors on almost Hermitian manifolds. Trans. Am. Math. Soc. 267, 365–398 (1981)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vanhecke, L.: Almost Hermitian manifolds with J-invariant Riemann curvature tensor. Rend. Sem. Mat. Univ. Politec. Torino 34, 487–498 (1975–1976)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematical and Actuarial SciencesUniversiti Tunku Abdul RahmanCherasMalaysia
  2. 2.Institute of Mathematical SciencesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations