Mediterranean Journal of Mathematics

, Volume 13, Issue 5, pp 2981–3013 | Cite as

Hardy Spaces Associated to Critical Herz Spaces with Variable Exponent



García-Cuerva (J Lond Math Soc (2) 39:499–513, 1989) has introduced Herz spaces associated to \({A^p}\) and studied atomic decomposition and its duality, where the space \({A^p}\) is a special case of Herz space. In this paper, we extend the atomic decomposition and duality results to the variable exponent settings.


Hardy space Beurling algebra Herz space variable exponent 

Mathematics Subject Classification

Primary 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida A., Drihem D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394, 781–795 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bandaliev, R.A.: On a weighted variable spaces \({L_{p(x),\omega} \rm for 0\le {\it p}({\it x})\le 1}\) and weighted Hardy inequality. arXiv:1212.1695v1
  3. 3.
    Chen Y.Z., Lau K.S.: Some new classes of Hardy spaces. J. Funct. Anal. 84, 255–278 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cruz-Uribe D., Fiorenza A., Neugebauer C.J.: The maximal function on variable \({L^p}\) spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)MathSciNetMATHGoogle Scholar
  5. 5.
    Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: Corrections to: The maximal function on variable \({L^p}\) spaces [Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)]. Ann. Acad. Sci. Fenn. Math. 29, 247–249 (2004)Google Scholar
  6. 6.
    Diening L.: Maximal function on generalized Lebesgue spaces \({L^{p(\cdot)}}\). Math. Inequal. Appl. 7, 245–253 (2004)MathSciNetMATHGoogle Scholar
  7. 7.
    Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011)Google Scholar
  8. 8.
    Drihem, D., Seghiri, F.: Notes on the Herz-type Hardy spaces of variable smoothness and integrability. Math. Inequal. Appl. (to appear)Google Scholar
  9. 9.
    Fefferman C., Stein E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Feichtinger H., Weisz F.: Herz spaces and summability of Fourier transforms. Math. Nachr. 281(3), 309–324 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    García-Cuerva J.: Hardy spaces and Beurling algebras. J. Lond. Math. Soc. (2) 39, 499–513 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    García-Cuerva J., Herrero M.-J.L.: A theory of Hardy spaces associated to the Herz spaces. Proc. Lond. Math. Soc. (3) 69, 605–628 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North–Holland Mathematics Studies, vol. 116. North-Holland, Amsterdam (1985)Google Scholar
  14. 14.
    Izuki M.: Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system. East J. Approx. 15, 87–109 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Izuki M.: Vector-valued inequalities on Herz spaces and characterizations of Herz–Sobolev spaces with variable exponent. Glas. Mat. 45, 475–503 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Izuki M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36, 33–50 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Izuki M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo (2) 59, 199–213 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Izuki M.: Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo (2) 59, 461–472 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Izuki M.: Fractional integrals on Herz–Morrey spaces with variable exponent. Hiroshima Math. J. 40, 343–355 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Izuki M., Noi T.: Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents. Rend. Circ. Mat. Palermo (2) 63, 221–245 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kováčik O., Rákosník J.: On spaces \({L^{p(x)} \rm and {\it W^{k,p(x)}}}\). Czechoslov. Math. J. 41, 592–618 (1991)MATHGoogle Scholar
  22. 22.
    Lu S., Wu Q., Yang D.: Boundedness of commutators on Hardy type space. Sci. China Ser. A. 45, 984–997 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lu S., Xu L.: Boundedness of commutators related to Marcinkiewicz integrals on Hardy type spaces. Anal. Theory Appl. 20, 215–230 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Matsuoka, K.: On some weighted Herz spaces and the Hardy–Littlewood maximal operator. In: Proceedings of the International Symposium on Banach and Function Spaces II, Kitakyusyu, Japan, pp. 375–384 (2006)Google Scholar
  25. 25.
    Rafeiro H., Samko S.: Riesz potential operators in continual variable exponents Herz spaces. Math. Nachr. 288, 465–475 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Samko S.: Differentiation and integration of variable order and the spaces \({L^{p(x)}}\). Contemp. Math. 212, 203–219 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stein E.M., Weiss G.: On the theory of harmonic functions of several variables I. The theory of \({H^p}\) spaces. Acta Math. 103, 25–62 (1960)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. University Press, Princeton (1971)MATHGoogle Scholar
  29. 29.
    Wang H., Liu Z.: The Herz-type Hardy spaces with variable exponent and their applications. Taiwan. J. Math. 16, 1363–1389 (2012)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Faculty of EducationOkayama UniversityOkayamaJapan
  2. 2.Department of MathematicsChuo UniversityTokyoJapan

Personalised recommendations