Mediterranean Journal of Mathematics

, Volume 13, Issue 5, pp 2525–2537 | Cite as

Nearly Kähler Submanifolds of a Space Form

  • Nikrooz Heidari
  • Abbas Heydari


In this article, we study isometric immersions of nearly Kähler manifolds into a space form (especially Euclidean space) and show that every nearly Kähler submanifold of a space form has an umbilic foliation whose leafs are 6-dimensional nearly Kähler manifolds. Moreover, using this foliation we show that there is no non-homogeneous 6-dimensional nearly Kähler submanifold of a space form. We prove some results towards a classification of nearly Kähler hypersurfaces in standard space forms.


Nearly Kähler manifold isometric immersion totally umbilic foliation 

Mathematics Subject Classification

53B35 53C55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belgun F., Moroianu A.: Nearly Kähler 6-manifolds with reduce holonomy. Ann. Global Anal. Geom. 19, 307–319 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Berndt, J., Console, S., Olmos, C.: Submanifolds and holonomy. Chapman & Hall/CRC Research Notes in Mathematics, vol. 434. Chapman & Hall/CRC, Boca Raton, FL (2003)Google Scholar
  3. 3.
    Butruille, J.-B.: Homogenous Nearly Kähler Manifolds. In: Vicente, C. (ed.) Handbook of pseudo-Riemannian geometry and supersymmetry, vol. 16, IRMA Lect. Math. theor. Phys Eur. Math. Soc. Publishing House, Zurich, pp. 399–423 (2010)Google Scholar
  4. 4.
    Dajczer, M.: Submanifolds and isometric immersions. Mathematics Lecture Series, vol. 13. Publish or Perish, Inc., Houston, TX (1990)Google Scholar
  5. 5.
    Erbacher J.: Reduction of the codimension of an isometric immersion. J. Differ. Geom. 5, 333–340 (1971)MathSciNetMATHGoogle Scholar
  6. 6.
    Florit A., Zheng F.: A local and global splitting result for real Kähler Euclidean submanifolds. Arch. Math. 84, 88–95 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Florit A., Zheng F.: Complete real Kähler submanifolds in codimension two. Math. Z. 258, 291–299 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Foscolo, L., Haskins, M.: New G 2-holonomy cones and exotic nearly Kähler structures on S 6 and S 3 ×  S 3 (2015).
  9. 9.
    Friedrich T.: Nearly Kähler and nearly parallel G 2-structures on spheres. Arch. Math. 42(5), 241–243 (2006)MathSciNetMATHGoogle Scholar
  10. 10.
    Gonzalez J.C., Cabrera F.M.: Homogenous nearly Kähler manifolds. Ann. Global Anal. Geom. 42, 147–170 (2011)MATHGoogle Scholar
  11. 11.
    Gray A.: Nearly Kähler Manifolds. J. Differ. Geom. 4, 283–309 (1970)MATHGoogle Scholar
  12. 12.
    Gray A.: Weak holonomy groups. Math. Z. 123, 290–300 (1971)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gray A.: The structure Of nearly Kähler manifolds. Math. Ann. 223, 233–248 (1976)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gray A., Hervella M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(1), 35–58 (1980)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Grunewland R.: Six-dimensional Riemannain manifolds with a real Killing spinor. Ann. Global Anal. Geom. 8(1), 43–59 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vols. I, II. Wiley, 1963 (1969)Google Scholar
  17. 17.
    Ledger A.J., Obata M.: Affine and riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968)MathSciNetMATHGoogle Scholar
  18. 18.
    Michor, P.W.: Topics in differential geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society Providence, RI (2008)Google Scholar
  19. 19.
    Moroianu A., Nagy P.-A., Semmelman U.: Unit Killing vector fields on nearly Kähler manifolds. Int. J. Math 16(3), 281–301 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Nagy P.-A.: Nearly Kähler geometry and riemannain foliations. Asian J. Math. 6(3), 481–504 (2002)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Nagy P.-A.: On Nearly-Kähler geometry. Ann. Global Anal. Geom. 22, 167–178 (2002)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Poon Y.-S., Salamon S.-M.: Quaternionic Kähler 8-manifolds with positive scalar curvature. J. Differ. Geom. 33, 363–378 (1991)MathSciNetMATHGoogle Scholar
  23. 23.
    Reys-Carrion, R.: Some special geometry defined by Lie groups, Ph.D. thesis, Oxfords (1993)Google Scholar
  24. 24.
    Stefan P.: Accessibility and foliations with singularities. Bull. Am. Math. Soc. 80(6), 1142–1145 (1974)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Susmman H.-J.: Orbits of families of vector fields and integrablity of systems with sigularities. Bull. Am. Math. Soc. 79(1), 197–199 (1973)CrossRefGoogle Scholar
  26. 26.
    Watanabe Y., Jinsuh Y.: On 6-dimensional nearly Kähler manifolds. Canad. Math. Bull. 53(3), 564–570 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsTarbiat Modares UniversityTehranIran

Personalised recommendations