Advertisement

Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 2301–2318 | Cite as

Two Efficient Inexact Algorithms for a Class of Large Sparse Complex Linear Systems

  • Vahid Edalatpour
  • Davod Hezari
  • Davod Khojasteh Salkuyeh
Article

Abstract

Recently Salkuyeh et al. (Int J Comput Math 92:802–815, 2015) studied the generalized SOR (GSOR) iterative method for a class of complex symmetric linear system of equations. In this paper, we present an inexact variant of the GSOR method in which the conjugate gradient and the preconditioned conjugate gradient methods are regarded as its inner iteration processes at each step of the GSOR outer iteration. Moreover, we construct a new method called shifted GSOR iteration method which is obtained from combination of a shift-splitting iteration scheme and the GSOR iteration method. The convergence analysis of the proposed methods are presented. Some numerical experiments are given to show the performance of the methods and are compared with those of the inexact MHSS method.

Mathematics Subject Classification

65F10 93C10 

Keywords

Complex symmetric systems real equivalent form inexact algorithm shift splitting GSOR method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arridge S.R.: Optical tomography in medical imaging. Inverse Probl. 15, 41–93 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Axelsson O., Kucherov A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197–218 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bai Z.-Z., Benzi M., Chen F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bai Z.-Z., Benzi M., Chen F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297–317 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bai Z.-Z., Benzi M., Chen F.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bai Z.-Z., Golub G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bai Z.-Z., Golub G.H., Ng M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bai Z.-Z., Parlett B.N., Wang Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1–38 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bai Z.-Z., Wang Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Numer. Linear Algebra Appl. 428, 2900–2932 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bai Z.-Z., Yin J.-F., Su Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539–552 (2006)MathSciNetMATHGoogle Scholar
  11. 11.
    Benzi M., Bertaccini D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28, 598–618 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Benzi M., Golub G.H., Liesen J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bertaccini D.: Efficient solvers for sequences of complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)MathSciNetMATHGoogle Scholar
  14. 14.
    Dijk, W.V., Toyama, F.M.: Accurate numerical solutions of the time-dependent Schrdinger equation. Phys. Rev. E 75 (2007)Google Scholar
  15. 15.
    Feriani A., Perotti F., Simoncini V.: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 1719–1739 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Frommer, A., Lippert, T., Medeke, B., Schilling, K. (eds.): Numerical challenges in lattice quantum chromodynamics. In: Lecture Notes in Computational Science and Engineering, vol. 15, pp. 66–83 (2000)Google Scholar
  17. 17.
    Hezari D., Edalatpour V., Salkuyeh D.K.: Preconditioned GSOR iteration method for a class of complex symmetric linear system. Numer. Linear Algebra Appl. 22, 761–776 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hiptmair R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Li X., Yang A.L., Wu Y.J.: Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer. Algorithms 66, 555–568 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Poirier B.: Efficient preconditioning scheme for block partitioned matrices with structured sparsity. Numer. Linear Algebra Appl. 7, 715–726 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)Google Scholar
  22. 22.
    Serre D.: Matrices: Theory and Applications. Springer, New York (2002)MATHGoogle Scholar
  23. 23.
    Salkuyeh D.K., Hezari D., Edalatpour V.: Generalized SOR iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92, 802–815 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Van Rienen U.: Numerical Methods in Computational Electrodynamics: Linear Systems in Practical Applications. Springer, Berlin (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Vahid Edalatpour
    • 1
  • Davod Hezari
    • 1
  • Davod Khojasteh Salkuyeh
    • 1
  1. 1.Faculty of Mathematical SciencesUniversity of GuilanRashtIran

Personalised recommendations