Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 2039–2059 | Cite as

Left- and Right-Atkinson Linear Relation Matrices



Let X and Y be Banach spaces. When A and B are linear relations in X and Y, respectively, we denote by M C the linear relation in X × Y of the form \( M_c = \Big(\begin{array}{ll} A & C \\ 0 & B \end{array}\Big)\), where 0 is the zero operator from X to Y and C is a bounded operator from Y to X. The goal of this paper is to present some necessary and sufficient conditions on A and B such that there exists a bounded operator C from Y to X for which M C is a Browder linear relation in X × Y.


Left-Atkinson relation right-Atkinson relation upper triangular linear relation matrix 

Mathematics Subject Classification

47A06 47A53 47A55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvarez T.: On the perturbation of semiFredholm relations with complemented ranges and null spaces. Acta. Math. Sinica (English Series) 26, 1545–1554 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Álvarez T.: On regular linear relations. Acta. Math. Sinica (English Series) 28, 183–194 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baskakov A.G., Chernyshov K.I.: Spectral analysis for linear relations, and degenerate semigroups of operators. Sbornik. Math. 193, 1573–1610 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cao, X.H.: Browder essential point spectra and hypercyclicity for operator matrices. Linear Algebra Appl. 426, 317–324 (2007)Google Scholar
  5. 5.
    Cao X.H.: Browder spectra of upper triangular operator matrices. J. Math. Anal. Appl. 193, 477–484 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chamkha Y., Mnif M.: Browder spectra of upper triangular matrix linear relations. Publ. Math. Debrecen 82, 569–590 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coddington E.A.: Multivalued operators and boundary value problems. Lect. Notes Math. 183, 1–8 (1971)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cross R.W.: Multivalued Linear Operators. Pure and Applied Mathematics. Marcel Dekker, New York (1998)Google Scholar
  9. 9.
    Cross R.W., Wilcox D.L.: Multivalued linear projections. Quaestiones Math. 25, 503–512 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cross R.W., Favini A., Yakukov Y.: Perturbation results for multivalued linear operators. Parabol. Probl. Progr. Nonlinear Differ. Equ. Appl. 80, 111–130 (2011)MathSciNetMATHGoogle Scholar
  11. 11.
    Djordjević D.S.: Perturbations of spectra of operator matrices. J. Oper. Theory 48, 467–486 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Djordjević D.S., Duggal B.P.: Drazin invertibility of the diagonal of an operator. Linear Multilinear Algebra 60, 65–71 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Djordjević D.S., Kolundz͂ija M.Z.: Right and left Fredholm operator matrices. Bull. Korean Math. Soc. 50, 1021–1027 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Faakhfakh, F.: Perturbation theory of single valued and multivalued semi-Browder linear operators. PhD Thesis, University of Sfax (2010)Google Scholar
  15. 15.
    Fakhfakh F., Mnif M.: Perturbation theory of lower semi-Browder multivalued linear operators. Publ. Math. Debrecen 78, 595–606 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Favini A., Yagi A.: Multivalued operators and degenerate evolution equations. Ann. Math. Pura. Appl. 163, 353–384 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grixti-Cheng D.: The invariant subspace problem for linear relations in Hilbert spaces. J. Aust. Math. Anal. Appl. 5, 4–7 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Hai G.J., Chen A.: Perturbations of right and left spectra for operator matrices. J. Oper. Theory 67, 207–214 (2012)MathSciNetMATHGoogle Scholar
  19. 19.
    Kaczynski T.: Multivalued maps as a tool in modeling and rigorous numerics. J. Fixed Point Theory. Appl. 4, 151–176 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Labrousse J.Ph., Sandovici A., De Snoo H.S.V., Winkler H.: The Kato decomposition of quasi-Fredholm relations. Oper. Matr. 4, 1–51 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lee W.Y.: Weyl spectra for operator matrices. Proc. Am. Math. Soc. 129, 131–138 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Müller-Horrig V.: Zur Theorie der Semi-Fredholm-Operatoren mit stetig projizierten Kern und Bild. Math. Nachr. 99, 185–197 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Neumann, J.V.: Functional operators, the geometry of orthogonal spaces. In: Ann. of Math. Stud, vol. 22. Princeton University Press, Princeton (1950)Google Scholar
  24. 24.
    Sandovici A., Snoo H., Winkler H.: Ascent, descent, nullity, defect and related notions for linear relations in linear spaces. Linear Alg. Appl. 423, 456–497 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sandovici A., Snoo H.: An index formula for the product of linear relations. Linear Alg. Appl. 431, 2160–2171 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zhang S.F., Wu Z.Q.: Characterization of perturbations of spectra of 2 × 2 upper triangular operator matrices. J. Math. Anal. Appl. 392, 103–110 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OviedoOviedoSpain
  2. 2.Département de Mathématiques, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisie

Personalised recommendations