Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 2287–2300 | Cite as

On the Domain of Starting Points of Newton’s Method Under Center Lipschitz Conditions



When the semilocal convergence of Newton’s method is studied in Banach spaces under center Lipschitz conditions, it is usual to choose the point where the Lipschitz condition is centered as the initial point for Newton’s method. In this work, we improve this choice looking for a domain of initial points (a convergence domain).


Nonlinear operator Newton’s method semilocal convergence region of accessibility integral equation nonlinear system 

Mathematics Subject Classification

47H99 65H10 65J15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyros I.K.: A unifying semilocal convergence theorem for Newton-like methods based on center Lipschitz conditions. Comput. Appl. Math. 21(3), 789–796 (2002)MathSciNetMATHGoogle Scholar
  2. 2.
    Argyros I.K.: On a theorem of L. V. Kantorovich concerning Newton’s method. J. Comput. Appl. Math. 155, 223–230 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Argyros I.K.: An improved error analysis for Newton-like methods under generalized conditions. J. Comput. Appl. Math. 157, 169–185 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Argyros I.K., Hilout S.: On the quadratic convergence of Newton’s method under center-Lipschitz but not necessarily Lipschitz hypothees. Math. Slov. 63, 621–638 (2013)MathSciNetMATHGoogle Scholar
  5. 5.
    Gutiérrez J.M., Hernández M.A.: Newton’s method under weak Kantorovich conditions. IMA J. Num. Anal. 20, 521–532 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Gutiérrez J.M., Hernández M.A.: Newton’s method under different Lipschitz conditions, (Numerical analysis and its applications). Lect. Notes Comput. Sci. 1988, 368–376 (2000)CrossRefGoogle Scholar
  7. 7.
    Gutiérrez J.M., Magreñán Á.A., Romero N.: On the semilocal convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 221, 79–88 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Hernández M.A.: Relaxing convergence conditions for Newton’s method. J. Math. Anal. Appl. 249, 463–475 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hongmin R., Argyros I.K.: On the semi-local convergence of Halley’s method under a center-Lipschitz condition on the second Fréchet derivative. Appl. Math. Comput. 218, 11488–11495 (2012)MathSciNetMATHGoogle Scholar
  10. 10.
    Kantorovich L.V.: The majorant principle and Newton’s method, (Russian). Dokl. Akad. Nauk SSSR. 76, 17–20 (1951)Google Scholar
  11. 11.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)Google Scholar
  12. 12.
    Yamamoto T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124, 1–23 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematics and ComputationUniversity of La RiojaLogroñoSpain

Personalised recommendations