Advertisement

Mediterranean Journal of Mathematics

, Volume 13, Issue 3, pp 1005–1031 | Cite as

Existence of the Mild Solution for Impulsive Neutral Stochastic Fractional Integro-Differential Inclusions with Nonlocal Conditions

  • Alka Chadha
  • Dwijendra N. Pandey
Article

Abstract

This paper mainly concerns with the existence of a mild solution for impulsive neutral integro-differential inclusions with nonlocal conditions in a separable Hilbert space. Utilizing fixed point theorem for multi-valued operators due to Dhage, we establish the existence result with resolvent operator and η-norm. An illustrative example is provided to show the effectiveness of the established results.

Keywords

Fractional calculus Caputo derivative resolvent operator impulsive stochastic fractional differential inclusion neutral equation nonlocal conditions multi-valued operators. 

Mathematics Subject Classification

26A33 34K37 34K40 34K45 35R11 45J05 45K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Podlubny I.: Fractional Differential Equations. Academic press, New York (1993)MATHGoogle Scholar
  2. 2.
    Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATHGoogle Scholar
  3. 3.
    Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publisher, Yverdon (1993)MATHGoogle Scholar
  4. 4.
    Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  5. 5.
    Byszewski L., Lakshmikantham V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, 11–19 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Byszewski L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 497–505 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Li F., N’Guérékata G.M.: An existence result for neutral delay integro-differential equations with fractional order and nonlocal conditions. Abstr. Appl. Anal. 2011, 1–20 (2011)Google Scholar
  8. 8.
    Li F., Liang J., Xu H.-K.: Existence of mild solutions for fractional integro-differential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)CrossRefMATHGoogle Scholar
  9. 9.
    Li F.: Nonlocal Cauchy problem for delay fractional integro-differential equations of neutral type. Adv. Differ. Equ. 2012, 1–23 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang J., Fečkan M., Zhou Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part. Differ. Equ. 8, 345–361 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zhu L., Li G.: Existence results of semilinear differential equations with nonlocal initial conditions in Banach spaces. Nonlinear Anal. TMA 74, 5133–5140 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and its Applications, vol. 2, Hindawi Publishing Corporation, New York (2006)Google Scholar
  13. 13.
    Lakshmikantham V., Baǐnov D., Simeonov P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)CrossRefMATHGoogle Scholar
  14. 14.
    Guendouzi T., Benzatout O.: Existence of mild solutions for impulsive fractional stochastic differential inclusions with state-dependent delay. Chin. J. Math. 2014, 1–13 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Diem D.H.: Existence for a second-order impulsive neutral stochastic integrodifferential equations with nonlocal conditions and infinite delay. Chin. J. Math. 2014, 1–13 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Farahi S., Guendouzi T.: Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions. Res. Math. 2014, 1–21 (2014)MathSciNetMATHGoogle Scholar
  17. 17.
    Abbas M.I.: Existence for fractional order impulsive integrodifferential inclusions with nonlocal initial conditions. Int. J. Math. Anal. 6, 1813–1828 (2012)MathSciNetMATHGoogle Scholar
  18. 18.
    Yan Z., Zhang H.: Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay. Electron. J. Differ. Equ. 81, 1–21 (2013)MathSciNetMATHGoogle Scholar
  19. 19.
    Yan Z., Jia X.: Impulsive problems for fractional partial neutral functional integro-differential inclusions with infinite delay and analytic resolvent operators. Mediterr. J. Math. 2013, 1–36 (2013)MathSciNetGoogle Scholar
  20. 20.
    Yan Z., Lu F.: On approximate controllability of fractional stochastic neutral integro-differential inclusions with infinite delay. Appl. Anal. 2014, 1–26 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yan Z., Jia X.: Approximate controllability of partial fractional neutral stochastic functional integro-differential inclusions with state-dependent delay. Collect. Math. 2014, 1–32 (2014)MathSciNetGoogle Scholar
  22. 22.
    Balasubramaniam P., Vinayagam D.: Existence of solutions of nonlinear stochastic integro-differential inclusions in a Hilbert space. Comput. Math. Appl. 50, 809–821 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Benchohra, M., Litimein, S., N’Guérékata, G.: On fractional integro-differential inclusions with state-dependent delay in Banach spaces. Appl. Anal. 92, 335–350 (2013)Google Scholar
  24. 24.
    Liu X., Liu Z.: Existence results for fractional semilinear differential inclusions in Banach spaces. J. Appl. Math. Comput. 42, 171–182 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li, Y., Liu, B.: Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay. Stoch. Anal. Appl. 25, 397–415 (2007)Google Scholar
  26. 26.
    Chauhan A., Dabas J.: Existence of mild solutions for impulsive fractional order semilinear evolution equations with nonlocal conditions. Electron. J. Differ. Equ. 2011, 1–10 (2011)MathSciNetMATHGoogle Scholar
  27. 27.
    Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)Google Scholar
  28. 28.
    Liu Y., Ahmad B.: A study of impulsive multiterm fractional differential equations with single and multiple base points and applications. Sci. World J. 2014, 1–28 (2014)Google Scholar
  29. 29.
    Mahto L., Abbas S., Favini A.: Analysis of Caputo impulsive fractional order differential equations with applications. Int. J. Differ. Equ. 2013, 1–11 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Oksendal B.: Stochastic Differential Equations. Springer, Berlin (2002)Google Scholar
  31. 31.
    Mao X.R.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)MATHGoogle Scholar
  32. 32.
    Sakthivel R., Luo J.: Asymptotic stability of impulsive stochastic partial differential equations with infinite delays. J. Math. Anal. Appl. 35, 1–6 (2009)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sakthivel R., Luo J.: Asymptotic stability of nonlinear impulsive stochastic differential equations. Stat. Probab. Lett. 79, 1219–1223 (2009)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Park J.Y., Jeong J.U.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Differ. Equ. 2014, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yan Z., Zhang H.: Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay. Electron. J. Differ. Equ. 206, 1–29 (2013)MathSciNetMATHGoogle Scholar
  36. 36.
    Lin A., Hu L.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with nonlocal initial conditions. Comput. Math. Appl. 59, 64–73 (2010)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Lin A., Ren Y., Xia N.: On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators. Math. Comput. Model. 51, 413–424 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ren Y., Li C.: A note on the neutral stochastic functional differential equation with infinite delay and Poisson jumps in an abstract space. J. Math. Phys. 50, 1–9 (2009)MathSciNetMATHGoogle Scholar
  39. 39.
    Yan Z., Zhang H.: On a nonlocal problem for partial stochastic functional integro-differential equations in Hilbert spaces. Electron. J. Math. Anal. Appl. 1, 212–229 (2013)Google Scholar
  40. 40.
    Chang Y.K., Zhao Z.H., N’Guérékata G.M.: Squaremean almost automorphic mild solutions to nonautonomous stochastic differential equations in Hilbert spaces. Comput. Math. Appl. 61, 384–391 (2011)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Fu M.M., Liu Z.X.: Square-mean almost automorphic solutions for some stochastic differential equations. Proc. Am. Math. Soc. 138, 3689–3701 (2010)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Sakthivel R., Revathi P., Anthoni S.M.: Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations. Nonlinear Anal. TMA 75, 3339–3347 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Mophou M.G.: Existence and uniqueness of mild solutions to implusive fractional differential equations. Nonlinear Anal. TMA 72, 1604–1615 (2010)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Smirnov G.V.: Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence (2002)MATHGoogle Scholar
  45. 45.
    Henderson J., Ouahab A.: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59, 1191–1226 (2010)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Anguraj A., Vinodkumar A.: Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential equations with infinite delays. Electron. J. Qual. Theory Differ. Equ. 67, 1–13 (2009)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Benchohra M., Ntouyas S.: Existence and controllability results for multivalued semilinear differential equations with nonlocal conditions. Soochow J. Math. 29, 157–170 (2003)MathSciNetMATHGoogle Scholar
  48. 48.
    Ezzinbi K., Fu X., Hilal K.: Existence and regularity in the α-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal. TMA 67, 1613–1622 (2007)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Chang Y.-K., Nieto J.J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30, 227–244 (2009)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Dhage B.C.: Fixed-point theorems for discontinuous multi-valued operators on ordered spaces with applications. Comput. Math. Appl. 51, 589–604 (2006)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)Google Scholar
  52. 52.
    Pazy, A.: Semi-groups of Linear operator and Applications of Partial Differential Equations. Springer, Berlin (1983)Google Scholar
  53. 53.
    Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)CrossRefMATHGoogle Scholar
  54. 54.
    Akhmerov R.R., Kamenskiǐ M.I., Potapov A.S., Rodkina A.E., Sadovskiǐ B.N.: Measures of Noncompactness and Condensing Operators. Birkhäuser, Boston (1992)Google Scholar
  55. 55.
    Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin (1992)Google Scholar
  56. 56.
    Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, Vol. 7. Walter de Gruyter, Berlin (2001)Google Scholar
  57. 57.
    Agarwal R.P., Santos J.P.C., Cuevas C.: Analytic resolvent operator and existence results for fractional order evolutionary integral equations. J. Abstr. Differ. Equ. Appl. 2, 26–47 (2012)MathSciNetMATHGoogle Scholar
  58. 58.
    Andrade B.D., Santos J.P.C.: Existence of solutions for a fractional neutral integro-differential equation with unbounded delay. Electron. J. Differ. Equ. 2012, 1–13 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations