Mediterranean Journal of Mathematics

, Volume 13, Issue 3, pp 967–979 | Cite as

Boundary Value Problems for Fractional Differential Inclusions with Nonlocal Conditions



In this paper, we investigate the existence of solutions for nonlocal boundary value problems for Riemann–Liouville fractional differential inclusions of order \({\alpha\in (1,2]}\) .

Mathematics Subject Classification

26A33 34A60 


Differential inclusion Riemann–Liouville fractional derivative fractional integral nonlocal condition existence fixed point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal R.P., Benchohra M., Hamani S.: Boundary value problems for fractional differential inclusions. Adv. Stud. Contemp. Math. 16(2), 181–196 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Agarwal R.P., Benchohra M., Hamani S., Pinelas S.: Boundary value problems for differential equations involving Rieman–Liouville fractional derivative on the half line. Dyn. Contin. Discret. Impuls. Syst. 18(1), 235–244 (2011)MathSciNetMATHGoogle Scholar
  3. 3.
    Agarwal R.P., Benchohra M., Hamani S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aubin, J.P., Cellina A.: Differential Inclusions. Springer, Berlin (1984)Google Scholar
  5. 5.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkh\({\ddot{a}}\)user, Boston (1990)Google Scholar
  6. 6.
    Bai Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bai Z., Lu H.S.: Positive solutions of a boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benchohra M., Djebali S., Hamani S.: Boundary value problems of differential inclusions with Riemann–Liouville fractional derivative. Nonlinear Oscil. 14(1), 7–20 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Benchohra M., Hamani S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. 32(1), 115–130 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Benchohra M., Hamani S.: Boundary value problems for differential inclusions with fractional order. Discuss. Math. Differ. Incl. Control Optim. 28, 147–164 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Stud. Math. 90, 69–86 (1988)MathSciNetMATHGoogle Scholar
  12. 12.
    Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)Google Scholar
  13. 13.
    Covitz H., Nadler S.B. Jr: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin (1992)Google Scholar
  15. 15.
    Delbosco D., Rodino L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204, 609–625 (1996)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Frigon M., Granas A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris Ser. I 310, 819–822 (1990)MathSciNetMATHGoogle Scholar
  17. 17.
    Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications, vol. 2. Kluwer Academic, Dordrecht (2004)Google Scholar
  18. 18.
    Fryszkowski A.: Continuous selections for a class of nonconvex multivalued maps. Stud. Math. 76, 163174 (1983)MathSciNetGoogle Scholar
  19. 19.
    Heymans N., Podlubny I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)CrossRefGoogle Scholar
  20. 20.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)Google Scholar
  21. 21.
    Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Theory, vol. I. Kluwer, Dordrecht (1997)Google Scholar
  22. 22.
    Karakostas G.L., Tsamatos P.C.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary value problems. Electron. J. Differ. Equ. 2002(30), 1–17 (2002)MathSciNetMATHGoogle Scholar
  23. 23.
    Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 3, 11 (2007)Google Scholar
  24. 24.
    Kilbas A.A., Marzan S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41, 84–89 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)Google Scholar
  26. 26.
    Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991)Google Scholar
  27. 27.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)Google Scholar
  28. 28.
    Momani S.M., Hadid S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 37–44 (2003)MathSciNetMATHGoogle Scholar
  29. 29.
    Momani S.M., Hadid S.B., Alawenh Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004, 697–701 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1999)Google Scholar
  31. 31.
    Podlubny I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MostaganemMostaganemAlgeria
  2. 2.Department of MathematicsBaylor UniversityWacoUSA

Personalised recommendations