Mediterranean Journal of Mathematics

, Volume 13, Issue 2, pp 607–623 | Cite as

Maximal Area Integral Problem for Certain Class of Univalent Analytic Functions

  • Saminathan Ponnusamy
  • Swadesh Kumar Sahoo
  • Navneet Lal Sharma


One of the classical problems concerns the class of analytic functions f on the open unit disk |z| < 1 which have finite Dirichlet integral Δ(1, f), where
$$\Delta(r ,f) = \iint_{|z| < r} |f' (z)| ^ 2 \, {\rm d} x {\rm d}y \quad (0 < r \leq 1)$$
The class \({\mathcal{S} ^*(A,B)}\) of normalized functions f analytic in |z| < 1 and satisfies the subordination condition \({zf'(z)/f(z)\prec (1+Az)/(1+Bz)}\) in |z| < 1 and for some \({-1\leq B\leq 0}\) , \({A \in \mathbb{C}}\) with \({A\neq B}\) , has been studied extensively. In this paper, we solve the extremal problem of determining the value of
$$\max_{f\in \mathcal{S}^*(A,B)}\Delta(r,z/f)$$
as a function of r. This settles the question raised by Ponnusamy and Wirths (Ann Acad Sci Fenn Ser AI Math 39:721–731, 2014). One of the particular cases includes solution to a conjecture of Yamashita which was settled recently by Obradović et al. (Comput Methods Funct Theory 13:479–492, 2013).


Analytic univalent convex star-like functions and spiral-like functions Dirichlet finite area integral Gaussian hypergeometric functions 

Mathematics Subject Classification

Primary 30C45 30C55 Secondary 33C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cluine J.G.: On meromorphic schlicht functions. J. Lond. Math. Soc. 34, 215–216 (1959)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Clunie J.G., Keogh F.R.: On starlike and convex schlicht functions. J. Lond. Math. Soc. 35, 229–233 (1960)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Duren, P.L.: Univalent Functions. Springer. New York (1983)Google Scholar
  4. 4.
    Goodman, A.W.: Univalent Functions, vol. 1–2. Mariner, Tampa (1983)Google Scholar
  5. 5.
    Janowski W.: Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 28, 297–326 (1981)MathSciNetMATHGoogle Scholar
  6. 6.
    Libera R.J.: Univalent α-spiral functions. Can. J. Math. 19, 449–456 (1967)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nevalinna, R.: Über die konforme Abbildung von Sterngebieten. Öresikt Av Finska Vetenskaps Soc. F̈orh. 63A(6), 1–21 (1921) Google Scholar
  8. 8.
    Obradović M., Ponnusamy S., Wirths K.J.: A proof of Yamashita’s conjecture on area integral. Comput. Methods Funct. Theory 13, 479–492 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Obradović, M., Ponnusamy, S., Wirths, K.J.: Integral means and Dirichlet integral for analytic functions. Math. Nachr. 288(2–3), 334–342 (2015)Google Scholar
  10. 10.
    Padmanabhan K.S.: On certain classes of starlike functions in the unit disk. J. Indian Math. Soc. (N.S.) 32, 89–103 (1968)MathSciNetMATHGoogle Scholar
  11. 11.
    Ponnusamy S., Wirths K.J.: On the problem of Gromova and Vasil’ev on integral means, and Yamashita’s conjecture for spirallike functions. Ann. Acad. Sci. Fenn. Ser. AI Math. 39, 721–731 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rainville, E.D.: Special Functions. The Macmillan Company, New York (1960)Google Scholar
  13. 13.
    Robertson M.S.: On the theory of univalent functions. Ann. Math. 37, 374–408 (1936)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Robertson M.S.: Quasi-subordination and coefficient conjectures. J. Bull. Am. Math. Soc. 76, 1–9 (1970)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rogosinski W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48(2), 48–82 (1943)MathSciNetMATHGoogle Scholar
  16. 16.
    Sahoo, S.K., Sharma, N.L.: On area integral problem for analytic functions in the starlike family (preprint). arXiv:1405.0469 [math.CV]
  17. 17.
    Silverman H.: Subclass of starlike functions. Rev. Roum. Math. Pure Appl. 33, 1093–1099 (1978)MATHGoogle Scholar
  18. 18.
    Singh R.: On a class of starlike functions. J. Indian Math. Soc. 32, 208–213 (1968)Google Scholar
  19. 19.
    Singh R., Singh V.: On a class of bounded starlike functions. Indian J. Pure Appl. Math. 5, 733–754 (1974)MathSciNetMATHGoogle Scholar
  20. 20.
    Špaček L.: Contribution à la théorie des fonctions univalentes (in Czech). Časop Pěst. Mat. Fys. 62, 12–19 (1933)MATHGoogle Scholar
  21. 21.
    Yamashita S.: Area and length maxima for univalent functions. Proc. Lond. Math. Soc. 41(2), 435–439 (1990)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Saminathan Ponnusamy
    • 1
  • Swadesh Kumar Sahoo
    • 2
  • Navneet Lal Sharma
    • 2
  1. 1.Indian Statistical Institute (ISI), Chennai CentreSETS (Society for Electronic Transactions and Security), MGR Knowledge CityChennaiIndia
  2. 2.Discipline of MathematicsIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations