Mediterranean Journal of Mathematics

, Volume 12, Issue 3, pp 973–986 | Cite as

Free Spaces Over Some Proper Metric Spaces

  • A. Dalet


We prove that the Lipschitz-free space over a countable proper metric space is isometric to a dual space and has the metric approximation property. We also show that the Lipschitz-free space over a proper ultrametric space is isometric to the dual of a space which is isomorphic to \({c_0(\mathbb{N})}\) .

Mathematics Subject Classification

Primary 46B10 46B28 Secondary 46B04 


Lipschitz-free space duality bounded approximation property proper metric space ultrametric space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel-Mathurin L.: Approximation properties and non-linear geometry of Banach space. Houst. J. Math. 38(4), 1135–1148 (2012)MathSciNetMATHGoogle Scholar
  2. 2.
    Buneman P.: A note on the metric properties of trees. J. Comb. Theory Ser. B 17, 48–50 (1974)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dalet, A.: Free spaces over countable compact metric spaces. Proc. Am. Math. Soc. (to appear)Google Scholar
  4. 4.
    Godard A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138(12), 4311–4320 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Godefroy G.: The use of norm attainment. Bull. Belg. Math. Soc. Simon Stevin 20(3), 417–423 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Godefroy G., Kalton N.J.: Lipschitz-free Banach spaces. Studia Math. 159(1), 121–141 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties. Proc. Am. Math. Soc. 142(5), 1681–1687 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955)Google Scholar
  9. 9.
    Hájek P., Pernecká E.: Schauder bases in Lipschitz-free spaces. J. Math. Anal. Appl. 416, 629–646 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Johnson W.B., Zippin M.: On subspaces of quotients of \({\left(\sum G_n\right)_{\ell_p}}\) and \({\left(\sum G_n\right)_{c_0}}\) . Isr. J. Math. 13, 311–316 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kalton N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55(2), 171–217 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Kloeckner, B.R.: A geometric study of Wasserstein space: ultrametrics. Mathematika doi: 10.1112/S0025579314000059
  13. 13.
    Lancien G., Pernecká E.: Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal. 264(10), 2323–2334 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lewis D.R., Stegall C.: Banach spaces whose duals are isomorphic to \({l_{1}(\Gamma )}\) . J. Funct. Anal. 12, 177–187 (1973)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I, Sequence Spaces. Springer, New York (1977)CrossRefMATHGoogle Scholar
  16. 16.
    Matoušek J.: Extension of Lipschitz mappings on metric trees. Comment. Math. Univ. Carol. 31(1), 99–104 (1990)MATHGoogle Scholar
  17. 17.
    Naor A., Schechtman G.: Planar earthmover in not in L 1. SIAM J. Comput. 37(3), 804–826 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pełczyński A.: Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis. Studia Math. 40, 239–243 (1971)MathSciNetMATHGoogle Scholar
  19. 19.
    Petunín Y.I., Plíčhko A.N.: Some properties of the set of functionals that attain a supremum on the unit sphere. Ukrain.Mat. Ž. 26, 102–106 (1974)MathSciNetMATHGoogle Scholar
  20. 20.
    Weaver N.: Lipschitz algebras. World Scientific Publishing Co. Inc., River Edge (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de Besançon, CNRS UMR 6623Université de Franche-ComtéBesançon CedexFrance

Personalised recommendations