Mediterranean Journal of Mathematics

, Volume 12, Issue 3, pp 939–956 | Cite as

On the Norm with Respect to Vector Measures of the Solution of an Infinite System of Ordinary Differential Equations

  • Orlando Galdames Bravo


In the present paper we give some necessary conditions that satisfy the solutions of an infinite system of ordinary differential equations. We investigate the behavior of the solutions of a general system of equations, regarding the norm of a Banach function space based on a vector measure. To this aim we construct a vector measure by an standard procedure. Assuming that the solution of each individual equation of the system belongs to a Banach function space based on scalar measures we deduce, with natural conditions, that a solution of such system belongs to a Banach function space based on a vector measure. We also give an example of a system of non-linear Bernoulli equations and show the relation with an equation involving the integral operator.


Banach function space vector measure system of differential equations integral equation 

Mathematics Subject Classification

Primary 46G10 Secondary 47N20 46N20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areshkin, G.Ya.: Applications of integrals of scalar functions with respect to a vector measure to some problems of functional analysis and the theory of linear integral equations. J. Math. Sci. 107(4), 3963–3971 (2001). Translated from Zapiski Nauchnykh Seminarov POMI, 255, 5–16 (1998)Google Scholar
  2. 2.
    Arino O., Sánchez E.: Linear theory of abstract functional differential equations of retarded type. . J. Math. Anal. Appl. 191, 547–571 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Banaś J., Lecko M.: Solvability of infinite systems of differential equations in Banach sequence spaces. J. Comput. Appl. Math. 113, 363–375 (2001)Google Scholar
  4. 4.
    Banaś, J.; Sadarangani, K.: Compactness conditions in the study of functional, differential, and integral equations. Abstr. Appl. Anal., Article ID 819315. (2013).
  5. 5.
    Brauer F.: Bounds for solutions of ordinary differential equations. Proc. Am. Math. Soc. 14(1), 36–43 (1963)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Calabuig J.M., Delgado O., Sáchez-Pérez E.A.: Generalized perfect spaces. Indag. Math. 19(3), 359–378 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Das K.M.: Bounds for solutions of 2nd order complex differential equations. Proc. Am. Math. Soc. 18(2), 220–225 (1967)MATHGoogle Scholar
  8. 8.
    Delgado, O.: Banach function spaces of L 1 of a vector measure and related Orlicz spaces. Indag. Mathem. N.S. 15(4), 485–495 (2004)Google Scholar
  9. 9.
    Diestel, J., Uhl, J.J.: Vector measures. In: Math. Surveys, vol. 15. Amer. Math. Soc., Providence (1977)Google Scholar
  10. 10.
    Dorogovtsev A., Petrova T.A.: Bound and periodic solutions of the Riccati equation in Banach space. J. Appl. Math. Stoch. Anal. 8(2), 195–200 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez Pérez, E.A.: Spaces of p-integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)Google Scholar
  12. 12.
    Galdames Bravo, O.: Duality theory for p-th power factorable operators and kernel operators. Ph.D. thesis, Universitat Politècnica de València (2013)Google Scholar
  13. 13.
    Galdames Bravo O., Sánchez-Pérez E.A.: Factorizing kernel operators. Integr. Equat. Oper. Th. 75(1), 13–29 (2013)CrossRefMATHGoogle Scholar
  14. 14.
    Goltser, Ya., Litsyn, E.: Non-linear Volterra IDE, infinite systems and normal forms of ODE. Nonlinear Anal. 68(6), 1553–1569 (2008)Google Scholar
  15. 15.
    Jiménez Fernández, E.: Vector measure orthogonal sequences in spaces of square integrable functions. Ph.D. thesis, Universitat Politècnica de València (2011)Google Scholar
  16. 16.
    Kantorovich L.V., Krylov V.I.: Approximate methods of higher analysis. Interscience Publishers Inc., New York (1958)MATHGoogle Scholar
  17. 17.
    Kluvánek I., Knowles G.: Vector Measures and Control Systems. North-Holland, Amsterdam (1975)MATHGoogle Scholar
  18. 18.
    Kanwal R.P.: Linear Integral Equations, Theory and Technique. Academic Press, New York (1971)MATHGoogle Scholar
  19. 19.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer, Berlin (1977)CrossRefMATHGoogle Scholar
  20. 20.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II. Springer, Berlin (1979)CrossRefMATHGoogle Scholar
  21. 21.
    Mursaleen M.: Application of measure of noncompactness to infinite systems of differential equations. Can. Math. Bull. 56(2), 388–394 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mursaleen M., Alotaibi A.: Infinite system of differential equations in some BK spaces. Abstr. Appl. Anal. 68(6), 1553–1569 (2008)MATHGoogle Scholar
  23. 23.
    Mursaleen, M., Mohiuddine, S.A.: Applications of measures of noncompactness to the infinite system of differential equations in p spaces. Nonlinear Anal. (TMA) 75, 2111–2115 (2012)Google Scholar
  24. 24.
    Okada S., Ricker W.J., Sánchez Pérez E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Birkhäuser, Basel (2008)MATHGoogle Scholar
  25. 25.
    Rao M.M.; Ren Z.D.: Applications of Orlicz Spaces. Marcel Dekker Inc., New York (2002)CrossRefMATHGoogle Scholar
  26. 26.
    Zeidler E.: Applied Functional Analysis: Applications to Mathematical Physics. Springer, New York (1995)MATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Departamento de EducaciónUniversidad Internacional de la RiojaMadridSpain

Personalised recommendations