Advertisement

Mediterranean Journal of Mathematics

, Volume 12, Issue 1, pp 159–171 | Cite as

Locally Symmetric CR-Integrable Almost Kenmotsu Manifolds

  • Yaning Wang
  • Ximin Liu
Article

Abstract

In this paper, it is proved that a locally symmetric almost Kenmotsu manifold of dimension 2n+1, n > 1, with CR-integrable structure is locally isometric to either the hyperbolic space of constant sectional curvature −1, or the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

Mathematics Subject Classification (2010)

Primary 53C25 Secondary 53D15 

Keywords

Almost Kenmotsu manifold local symmetry CR-integrable structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertola M., Gouthier D.: Lie triple system and warped products. Rend. Math. Appl. VII Ser. 21, 275–293 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Binh T.Q., Tamássy L., De U.C., Tarafdar M.: Some remarks on almost Kenmotsu manifolds. Math. Pannon. 13, 31–39 (2002)MATHMathSciNetGoogle Scholar
  3. 3.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203, Birkhäuser (2010)Google Scholar
  4. 4.
    Boeckx E., Cho J.T.: Locally symmetric contact metric manifolds. Monatsh. Math. 148, 269–281 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    De U.C.: On ϕ-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 1, 33–38 (2008)MATHGoogle Scholar
  6. 6.
    De, U.C., Yıldız, A., Yalınız, A.F.: On ϕ-recurrent Kenmotsu manifolds. Turk. J. Math. 33, 17–25 (2009)Google Scholar
  7. 7.
    De U.C., Yildiz A., Yalınız A.F.: Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3. Appl. Math. Lett. 22, 723–727 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dileo G.: On the geometry of almost contact metric manifolds of Kenmotsu type. Differ. Geom. Appl. 29, S58–S64 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dileo G., Pastore A.M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14, 343–354 (2007)MATHMathSciNetGoogle Scholar
  10. 10.
    Dileo G., Pastore A.M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93, 46–61 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dileo G., Pastore A.M.: Almost Kenmotsu manifolds with a condition of η-parallelism. Differ. Geom. Appl. 27, 671–679 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Falcitelli M., Pastore A.M.: Almost Kenmotsu f-manifolds. Balkan J. Geom. Appl. 12, 32–43 (2007)MATHMathSciNetGoogle Scholar
  13. 13.
    Ghosh A., Sharma R.: On contact strongly pseudo-convex integrable CR manifolds. J. Geom. 66, 116–122 (1999)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hui S.K.: On weakly ϕ-symmetric Kenmotsu Manifolds. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51, 43–50 (2012)MATHMathSciNetGoogle Scholar
  15. 15.
    Janssens D., Vanhecke L.: Almost contact structures and curvature tensors. Kodai Math. J. 4, 1–27 (1981)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Jun J.B., De U.C., Pathak G.: On Kenmotsu manifolds. J. Korean Math. Soc. 42, 435–445 (2005)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kenmotsu K.: A class of almost contact Riemannian manifolds. Tôhoku Math. J. 24, 93–103 (1972)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kim T.W., Pak H.K.: Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. (Engl. Ser.) 21, 841–846 (2005)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Özgür C.: On weakly symmetric Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 8, 204– (2006)MathSciNetGoogle Scholar
  20. 20.
    Öztürk H.,Aktan H., Aktan N., Murathan C.: On α-Kenmotsu manifolds satisfying certain conditions. Appl. Sci. 12, 115– (2010)MathSciNetGoogle Scholar
  21. 21.
    Pastore A.M., Saltarelli V.: Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4, 168–183 (2011)MathSciNetGoogle Scholar
  22. 22.
    Pastore A.M., Saltarelli V.: Almost Kenmotsu manifolds with conformal Reeb foliation. Bull. Belg. Math. Soc. Simon Stevin 21, 343–354 (2012)Google Scholar
  23. 23.
    Takahashi T.: Sasakian ϕ-symmetric spaces. Tôhoku Math. J. 29, 91–113 (1977)CrossRefMATHGoogle Scholar
  24. 24.
    Wang, Y., Liu, X.: Almost Kenmotsu pseudo-metric manifolds. To appear in An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)Google Scholar
  25. 25.
    Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. To appear in Ann. Polon. Math.Google Scholar
  26. 26.
    Yíldíz A., De U.C.: On a type of Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 12, 289–298 (2010)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations