Mediterranean Journal of Mathematics

, Volume 11, Issue 3, pp 891–903

# On Some Quasilinear Elliptic Systems with Singular and Sign-Changing Potentials

• G. A. Afrouzi
• Nguyen Thanh Chung
Article

## Abstract

Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system
$$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$
where $${\Omega \subset \mathbb{R}^N,N \geq 3}$$ , is a bounded domain containing the origin with smooth boundary $${\partial \Omega ; h_i, i = 1, 2}$$ , are nonhomogeneous potentials; $${(F_u, F_v) = \nabla F}$$ stands for the gradient of a sign-changing C 1-function $${F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}$$ in the variable $${{w = (u, v) \in \mathbb{R}^2}}$$ ; and λ and μ are parameters.

## Mathematics Subject Classification (2000)

35B30 35J60 35P15

## Keywords

Quasilinear elliptic systems Multiplicity Nonexistence Variational methods

## References

1. 1.
Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 4, 349–381 (1973)
2. 2.
Bezerrado Ó J.M.: Existence of solutions for quasilinear elliptic equations. J. Math. Anal. Appl. 207, 104–126 (1997)
3. 3.
Boccardo L., de Figueiredo D.G.: Some remarks on a system of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. 9, 309–323 (2002)
4. 4.
Bonder J.F.: Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities. Abstr. Appl. Anal. 2004(12), 1047–1055 (2004)
5. 5.
Costa D.G., Magalhães C.A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differ. Equ. 111, 103–122 (1994)
6. 6.
Costa D.G., Magalhães C.A.: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. 24, 409–418 (1995)
7. 7.
Djellit A., Tas S.: On some nonlinear elliptic systems. Nonlinear Anal. 59, 695–706 (2004)
8. 8.
Ding L., Xiao S.W.: Solutions for singular elliptic systems involving Hardy–Sobolev critical nonlinearity. Differ. Equ. Appl. 2(2), 227–240 (2010)
9. 9.
Duan S., Wu X.: The existence of solutions for a class of semilinear elliptic systems. Nonlinear Anal. 73, 2842–2854 (2010)
10. 10.
Figueiredo G.M.: Existence of positive solutions for a class of p&q elliptic problems with critical growth on $${\mathbb {R}^N}$$ . J. Math. Anal. Appl. 378, 507–518 (2011)
11. 11.
Furtado M.F., de Paiva F.O.V.: Multiplicity of solutions for resonant elliptic systems. J. Math. Anal. Appl. 319, 435–449 (2006)
12. 12.
He C., Li G.: The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to u p-1 at infinity in $${\mathbb {R}^N}$$ . Nonlinear Anal. 68, 1100–1119 (2008)
13. 13.
Hsu T.S., Li H.L.: Multiplicity of positive solutions for singular elliptic systems with critical Sobolev–Hardy and concave exponents. Acta Math. Sci. 31(3), 791–804 (2011)
14. 14.
Li G., Liang X.: The existence of nontrivial solutions to nonlinear elliptic equation of pq-Laplacian type on $${\mathbb {R}^N}$$ . Nonlinear Anal. 71, 2316–2334 (2009)
15. 15.
Li G., Guo Z.: Multiple solutions for the p&q-Laplacian problem with critical exponent. Acta Math. Sci. 29, 903–918 (2009)
16. 16.
Long J., Yang J.: Existence results for critical singular elliptic systems. Nonlinear Anal. 69, 4199–4214 (2008)
17. 17.
Montefusco E.: Lower semicontinuity of functionals via concentration-compactness principle. J. Math. Anal. Appl. 263, 264–276 (2001)
18. 18.
Ou Z.Q., Tang C.L.: Existence and multiplicity results for some elliptic systems at resonance. Nonlinear Anal. 71, 2660–2666 (2009)
19. 19.
Perera K.: Multiple positive solutions for a class of quasilinear elliptic boundary-value problems. Electron. J. Differ. Equ. 2003(7), 1–5 (2003)Google Scholar
20. 20.
Struwe, M.: Variational Methods, 2nd edn. Springer, Berlin (2008)Google Scholar
21. 21.
Suo H.M., Tang C.L.: Multiplicity results for some elliptic systems near resonance with a nonprincipal eigenvalue. Nonlinear Anal. 73, 1909–1920 (2010)
22. 22.
Wu, M., Yang, Z.: A class of pq-Laplacian type equation with potentials eigenvalue problem in $${\mathbb {R}^N}$$ . Bound. Value Probl. 2009: Article ID 185319 (2009)Google Scholar
23. 23.
Zhang J., Zhang Z.: Existence results for some nonlinear elliptic systems. Nonlinear Anal. 71, 2840–2846 (2009)