Skip to main content
Log in

On Some Quasilinear Elliptic Systems with Singular and Sign-Changing Potentials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system

$$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$

where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 4, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bezerrado Ó J.M.: Existence of solutions for quasilinear elliptic equations. J. Math. Anal. Appl. 207, 104–126 (1997)

    Article  MathSciNet  Google Scholar 

  3. Boccardo L., de Figueiredo D.G.: Some remarks on a system of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. 9, 309–323 (2002)

    Article  MATH  Google Scholar 

  4. Bonder J.F.: Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities. Abstr. Appl. Anal. 2004(12), 1047–1055 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costa D.G., Magalhães C.A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differ. Equ. 111, 103–122 (1994)

    Article  MATH  Google Scholar 

  6. Costa D.G., Magalhães C.A.: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. 24, 409–418 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Djellit A., Tas S.: On some nonlinear elliptic systems. Nonlinear Anal. 59, 695–706 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ding L., Xiao S.W.: Solutions for singular elliptic systems involving Hardy–Sobolev critical nonlinearity. Differ. Equ. Appl. 2(2), 227–240 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Duan S., Wu X.: The existence of solutions for a class of semilinear elliptic systems. Nonlinear Anal. 73, 2842–2854 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Figueiredo G.M.: Existence of positive solutions for a class of p&q elliptic problems with critical growth on \({\mathbb {R}^N}\) . J. Math. Anal. Appl. 378, 507–518 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Furtado M.F., de Paiva F.O.V.: Multiplicity of solutions for resonant elliptic systems. J. Math. Anal. Appl. 319, 435–449 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. He C., Li G.: The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to u p-1 at infinity in \({\mathbb {R}^N}\) . Nonlinear Anal. 68, 1100–1119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hsu T.S., Li H.L.: Multiplicity of positive solutions for singular elliptic systems with critical Sobolev–Hardy and concave exponents. Acta Math. Sci. 31(3), 791–804 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li G., Liang X.: The existence of nontrivial solutions to nonlinear elliptic equation of pq-Laplacian type on \({\mathbb {R}^N}\) . Nonlinear Anal. 71, 2316–2334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li G., Guo Z.: Multiple solutions for the p&q-Laplacian problem with critical exponent. Acta Math. Sci. 29, 903–918 (2009)

    Article  MATH  Google Scholar 

  16. Long J., Yang J.: Existence results for critical singular elliptic systems. Nonlinear Anal. 69, 4199–4214 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Montefusco E.: Lower semicontinuity of functionals via concentration-compactness principle. J. Math. Anal. Appl. 263, 264–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ou Z.Q., Tang C.L.: Existence and multiplicity results for some elliptic systems at resonance. Nonlinear Anal. 71, 2660–2666 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Perera K.: Multiple positive solutions for a class of quasilinear elliptic boundary-value problems. Electron. J. Differ. Equ. 2003(7), 1–5 (2003)

    Google Scholar 

  20. Struwe, M.: Variational Methods, 2nd edn. Springer, Berlin (2008)

  21. Suo H.M., Tang C.L.: Multiplicity results for some elliptic systems near resonance with a nonprincipal eigenvalue. Nonlinear Anal. 73, 1909–1920 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, M., Yang, Z.: A class of pq-Laplacian type equation with potentials eigenvalue problem in \({\mathbb {R}^N}\) . Bound. Value Probl. 2009: Article ID 185319 (2009)

  23. Zhang J., Zhang Z.: Existence results for some nonlinear elliptic systems. Nonlinear Anal. 71, 2840–2846 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Afrouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrouzi, G.A., Chung, N.T. & Naghizadeh, Z. On Some Quasilinear Elliptic Systems with Singular and Sign-Changing Potentials. Mediterr. J. Math. 11, 891–903 (2014). https://doi.org/10.1007/s00009-013-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-013-0363-0

Mathematics Subject Classification (2000)

Keywords

Navigation