Mediterranean Journal of Mathematics

, Volume 11, Issue 2, pp 255–271 | Cite as

Some Results on a Class of Polynomials Related to Convolutions of the Catalan Sequence



Motivated by the search of the singular values of Jordan blocks, in a previous paper (Capparelli and Maroscia in Med J Math 10:1609–1630, 2013) we studied, among other things, a family of monic polynomials with integer coefficients that turned out to be linked to convolutions of the sequence of Catalan numbers. In the present paper, we continue the study of these polynomials and prove, in particular, the irreducibility of an infinite subset of them. As an interesting byproduct, we also obtain a simple rational function in two variables which can be naturally thought of as the generating function of the Catalan number sequence and all its convolutions.

Mathematics Subject Classification (2010)

Primary 11C08 Secondary 11R09 


Irreducibility Newton’s polygon Dumas’ theorem Catalan numbers ballot numbers Bezoutian matrix Hankel matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Capparelli S., Maroscia P.: On two sequences of orthogonal polynomials related to Jordan blocks. Med. J. Math. 10, 1609–1630 (2013)MATHMathSciNetGoogle Scholar
  2. 2.
    Church R.: Tables of irreducible polynomials for the first four prime moduli. Ann. Math. Second Ser. 36(1), 198–209 (1935)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dorwart H.L.: Irreducibility of polynomials. Am. Math. Mon. 42(6), 369–381 (1935)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dumas G.: Sur quelques cas d’irréductibilité des polynomes à coefficients rationnels. J. de Math. 6E série. 2, 191–258 (1906)MATHGoogle Scholar
  5. 5.
    Gantmacher, F.R.: The Theory of Matrices. GITTL, Moscow (1953); English transl., vol. 2. Chelsea, New York (1959)Google Scholar
  6. 6.
    Glaisher J.: On the residue of a binomial-theorem coefficient with respect to a prime modulus. Q. J. Pure Appl. Math. 30, 150–156 (1899)Google Scholar
  7. 7.
    Hermite C.: Remarques sur le théorème de Sturm. C. R. Acad. Sci. Paris 36, 32–54 (1853)Google Scholar
  8. 8.
    Hilton P., Pedersen J.: Catalan numbers, their generalization. and their uses. Math. Intell. 13(2), 6475 (1991)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Iohvidov S.: On Hankel matrices and forms math. USSR Sbornik 9(2), 229–239 (1969)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Prasolov V.V.: Polynomials. Springer, Berlin (2004)MATHGoogle Scholar
  11. 11.
    Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Sylvester, J.J.: Mathematical Papers, vol. I, pp. 511 ff. Chelsea, New York (1973)Google Scholar
  13. 13.
    Wahab J.H.: New cases of irreducibility for Legendre polynomials. Duke Math. J. 19, 165–176 (1952)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze di Base e Applicate per l’IngegneriaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations