Mediterranean Journal of Mathematics

, Volume 10, Issue 4, pp 1633–1656

# Noetherian Leavitt Path Algebras and Their Regular Algebras

Article

## Abstract

In the past, it has been shown that the Leavitt path algebra L(E) = L K (E) of a graph E over a field K is left and right noetherian if and only if the graph E is finite and no cycle of E has an exit. If Q(E) = Q K (E) denotes the regular algebra over L(E), we prove that these two conditions are further equivalent with any of the following: L(E) contains no infinite set of orthogonal idempotents, L(E) has finite uniform dimension, L(E) is directly finite, Q(E) is directly finite, Q(E) is unit-regular, Q(E) is left (right) self-injective and a few more equivalences. In addition, if the involution on the field K is positive definite, these conditions are equivalent with the following: the involution * extends from L(E) to Q(E), Q(E) is *-regular, Q(E) is finite, Q(E) is the maximal (total or classical) symmetric ring of quotients of L(E), the maximal right ring of quotients of L(E) is the same as the total (or classical) left ring of quotients of L(E), every finitely generated nonsingular L(E)-module is projective, and the matrix ring M n (L(E)) is strongly Baer for every n. It may not be surprising that a noetherian Leavitt path algebra has these properties, but a more interesting fact is that these properties hold only if a Leavitt path algebra is noetherian (i.e. E is a finite no-exit graph).

Using some of these equivalences, we give a specific description of the inverse of the isomorphism V (L(E)) → V (Q(E)) of monoids of equivalence classes of finitely generated projective modules of L(E) and Q(E) for noetherian Leavitt path algebras. We also prove that two noetherian Leavitt path algebras are isomorphic as rings if and only if they are isomorphic as *-algebras. This answers in affirmative the Isomorphism Conjecture for the class of noetherian Leavitt path algebras: if $${L_{\mathbb{C}}(E)}$$ and $${L_{\mathbb{C}}(F)}$$ are noetherian Leavitt path algebras, then $${L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)}$$ as rings implies $${C^{*} (E) \cong C^{*} (F)}$$ as *-algebras.

## Mathematics Subject Classification (2010)

Primary 16W99 Secondary 16W10 16S99 16S85

## Keywords

Leavitt path algebra regular algebra ring of quotients nonstable K-theory

## References

1. 1.
Abrams G., Aranda Pino G.: The Leavitt path algebra of a graph. J. Algebra 293(2), 319–334 (2005)
2. 2.
Abrams G., Aranda Pino G., Perera F., Siles Molina M.: Chain conditions for Leavitt path algebras. Forum Math. 22, 95–114 (2010)
3. 3.
Abrams G., Aranda Pino G., Siles Molina M.: Locally finite Leavitt path algebras. Israel J. Math. 165, 329–348 (2008)
4. 4.
Abrams G., Rangaswamy K.L.: Regularity conditions for arbitrary Leavitt path algebras. Algebr. Represent. Theory 13(3), 319–334 (2010)
5. 5.
Abrams G., Tomforde M.: Isomorphism and Morita equivalence of graph algebras. Trans. Amer. Math. Soc. 363, 3733–3767 (2011)
6. 6.
Ara P., Brustenga M.: The regular algebra of a quiver. J. Algebra 309, 207–235 (2007)
7. 7.
Ara P., Brustenga M.: Module theory over Leavitt path algebras and Ktheory. J. Pure Appl. Algebra 214(7), 1131–1151 (2010)
8. 8.
Ara P., Menal P.: On regular rings with involution. Arch. Math. (Basel) 42(2), 126–130 (1984)
9. 9.
Ara P., Moreno M. A., Pardo E.: Nonstable K-theory for graph algebras. Algebr. Represent. Theory 10, 157–178 (2007)
10. 10.
G. Aranda Pino, F. Perera and M. Siles Molina, eds., Graph algebras: bridging the gap between analysis and algebra, Universidad de Málaga Press 2007, ISBN: 978-84-9747-177-0.Google Scholar
11. 11.
G. Aranda Pino, K. L. Rangaswamy and L. Vaš, *-regular Leavitt path algebra of arbitrary graphs. Acta Math. Sci. Ser. B Engl. Ed. 28 (5) (2012), 957 – 968.Google Scholar
12. 12.
S. K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften 195, Springer-Verlag, Berlin-Heidelberg-New York, 1972.Google Scholar
13. 13.
Bergman G. M.: Coproducts and Some Universal Ring Constructions. Trans. Amer. Math. Soc. 200, 33–88 (1974)
14. 14.
M. W. Evans, A class of semihereditary rings. Rings, modules and radicals, (Hobart, 1987), 51–60, Pitman Res. Notes Math. Ser. 204, Longman Sci. Tech., Harlow, 1989.Google Scholar
15. 15.
Gardner L. T.: On isomorphisms of C *-algebras, Amer. J. Math. 87((2), 384–396 (1965)
16. 16.
K. R. Goodearl, Von Neumann Regular Rings, 2nd Ed., Krieger, Malabar, FL, 1991.Google Scholar
17. 17.
Goodearl K.R.: Leavitt path algebras and direct limits. Contemp. Math. 480, 165–187 (2009)
18. 18.
Handelman D.: Perspectivity and cancellation in regular rings. J. Algebra 48, 1–16 (1977)
19. 19.
Handelman D.: Coordinatization applied to finite Baer *-rings. Trans. Amer. Math. Soc. 235, 1–34 (1978)
20. 20.
Lanning S.: The maximal symmetric ring of quotients. J. Algebra, 179, 47–91 (1996)
21. 21.
T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, Springer-Verlag, New York, 1999.Google Scholar
22. 22.
E. Ortega, The maximal symmetric ring of quotients: path algebras, incidence algebras and bicategories, Ph. D. Thesis, Universitat Autònoma de Barcelona, 2006.Google Scholar
23. 23.
Ortega E.: Rings of quotients of incidence algebras and path algebras. J. Algebra 303(1), 225–243 (2006)
24. 24.
Ortega E.: Two-sided localization of bimodules, Comm. Algebra 36(5), 1911–1926 (2008)
25. 25.
Pyle E.S.: The regular ring and the maximal ring of quotients of a finite Baer *-ring. Trans. Amer. Math. Soc. 203, 201–213 (1975)
26. 26.
Siles Molina M.: Algebras of quotients of path algebras. J. Algebra 319(12), 329–348 (2008)
27. 27.
B. Stenström, Rings of quotients, Die Grundlehren der Mathematischen Wissenschaften 217, Springer-Verlag, New York-Heidelberg, 1975.Google Scholar
28. 28.
Tomforde M.: Uniqueness theorems and ideal structure for Leavitt path algebras. J. Algebra 318, 270–299 (2007)
29. 29.
Utumi Y.: On rings of which one-sided quotient rings are two-sided. Proc. Amer. Math. Soc. 14, 141–147 (1963)
30. 30.
Vaš L.: Dimension and torsion theories for a class of Baer *-rings. J. Algebra 289(2), 614–639 (2005)
31. 31.
Vaš L.: A simplification of Morita’s construction of total right rings of quotients for a class of rings. J. Algebra 304(2), 989–1003 (2006)
32. 32.
Vaš L.: Perfect symmetric rings of quotients. J. Algebra Appl. 8(5), 689–711 (2009)