Mediterranean Journal of Mathematics

, Volume 11, Issue 2, pp 789–797 | Cite as

Real Hypersurfaces in Nearly Kaehler 6-Sphere

Original Paper


In this paper we study real hypersurfaces in the nearly Kaehler 6-sphere S 6 and show that there are three almost contact metric structures on a real hypersurface. Then we use a conformal vector field on the 6-sphere S 6 and study its influence on the almost contact metric structures on the real hypersurface M and use it to characterize the hyperspheres in S 6.

Mathematics Subject Classification (2000)

53C15 53B25 


Real hypersurfaces shape operator conformal vector field almost contact structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blair, D.E.: Contact manifolds in Riemannian Geometry, Lecture Notes in Math, vol. 509. Springer, Berlin (1976)Google Scholar
  2. 2.
    Bolton J., Vrancken L., Woodward L.: On almost complex curves in the nearly Kaehler 6-sphere. Quart. J. Math. 45, 407–427 (1994)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bolton J., Pedit F., Woodward L.: Minimal surfaces and the affine Toda field model. J. Reine. Angew. Math. 459, 119–150 (1995)MATHMathSciNetGoogle Scholar
  4. 4.
    BoltonJ., Vrancken L., Woodward L.: Totally real minimal surfaces with non-circular ellipse of curvature in the nearly Kaehler S 6. J. London Math. Soc. 56(3), 625–644 (1997)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Berndt J., Bolton J., Woodward L.: Almost complex curves and Hopf hypersurfaces in the nearly Kaehler 6-Sphere. Geom. Dedicata 56, 237–247 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bryant R.L.: Submanifolds and special structures on the octonians. J. Diff. Geom. 17, 185–232 (1982)MATHGoogle Scholar
  7. 7.
    Deshmukh S.: Conformal vector fields and eigenvectors of Laplacian operator. Math. Phy. Anal. Geom. 172, 163–172 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Deshmukh S.: Totally real submanifolds of S 6. Nihonkai Math. J. 1, 193–201 (1990)MATHMathSciNetGoogle Scholar
  9. 9.
    Deshmukh S.: Characterizing spheres by conformal vector fields. Ann. Univ. Ferrara Sez. VII Sci. Mat. 56(2), 231–236 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Deshmukh S., Al-solamy F.: Hopf hypersurfaces in nearly Kaehler 6-sphere. Balkan Journal of Geometry and Its Applications 13(1), 38–46 (2008)MATHMathSciNetGoogle Scholar
  11. 11.
    Deshmukh S.: Totally real submanifolds in a 6-sphere. Mich. Math. J. 38, 349–353 (1991)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Deshmukh S.: Minimal hypersurfaces in nearly Kaehler 6-Sphere. J. Geom. Phy. 60, 623–625 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Deshmukh S.: Totally real surfaces in S 6 Tamkang. J. Math. 23(1), 11–14 (1992)MATHMathSciNetGoogle Scholar
  14. 14.
    Dillen F., Vrancken L.: Totally real submanifolds in S 6(1) satisfying Chen’s inequality. Trans. Amer. Math. Soc. 348, 1933–1946 (1996)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ejiri N.: Totally real submanifolds in a 6-sphere. Proc. Amer. Math. Soc. 83, 759–763 (1981)MATHMathSciNetGoogle Scholar
  16. 16.
    Gray A.: Almost complex submanifolds of the six sphere. Proc. Amer. Math. Soc. 20, 277–279 (1969)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hashimoto H.: J-holomorphic curves in a 6-dimensional sphere. Tokyo J. Math. 23, 137–159 (2000)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hashimoto H., Mashimo K.: On some 3-dimensional CR-submanifolds in S 6. Nagoya Math. J. 45, 171–185 (1999)MathSciNetGoogle Scholar
  19. 19.
    Sekigawa K.: Almost complex submanifolds of a 6-dimensional sphere. Kodai. Math. J. 6, 174–185 (1983)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsCollege of Science, King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations