Mediterranean Journal of Mathematics

, Volume 10, Issue 2, pp 807–821 | Cite as

Polynomial Inequalities with an Exponential Weight on (0,+∞)

  • Giuseppe Mastroianni
  • Incoronata Notarangelo
  • József Szabados


We consider the weight \({{u(x) = x^{\gamma} e^{-x^{-\alpha}-x^{\beta}}}}\) , with \({{x \in(0,+\infty)}}\) , α >  0, β >  1 and γ ≥  0 and prove Remez-, Bernstein–Markoff-, Schurand Nikolskii-type inequalities for algebraic polynomials with the weight u on (0, + ).

Mathematics Subject Classification (2010)



Weighted polynomial inequalities exponential weights realsemiaxis unbounded intervals Remez inequality Bernstein–Markoff inequalities Schur inequality Nikolskii inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freud G.: Orthogonal Polynomials. Akadémiai Kiad´o/Pergamon Press, Budapest (1971)Google Scholar
  2. 2.
    Freud G.: On polynomial approximation with the weight exp((–x 2k/2)). Acta Math. Acad. Sci. Hungar. 24, 363–371 (1973)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Freud G.: On the converse theorems of weighted polynomial approximation. Acta Math. Acad. Sci. Hungar. 24, 389–397 (1973)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    K. G. Ivanov, E. B. Saff and V. Totik, Approximation by polynomials with locally geometric rates, Proc. Amer. Math. Soc. 106 (1989), no. 1, 153–161.Google Scholar
  5. 5.
    A. L. Levin and D. S. Lubinsky, Canonical products and the weights exp(–|x|α), α > 1, with applications, J. Approx. Theory 49 (1987), 149–169.Google Scholar
  6. 6.
    A. L. Levin and D. S. Lubinsky, Weights on the real line thet admit good reletive polynomial approximation, with applications, J. Approx. Theory 49 (1987), 170–195.Google Scholar
  7. 7.
    A. L. Levin and D. S. Lubinsky, Orthogonal polynomials for exponential weights, CSM Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4. Springer-Verlag, New York, 2001.Google Scholar
  8. 8.
    G. Mastroianni, Some Weighted Polynomial Inequalities, Proceedings of the International Conference on Orthogonality Moment Problem and Continued Fractions, J. Comput. Appl. Math., 65 (1995), no. 1-3, 279–292.Google Scholar
  9. 9.
    G. Mastroianni and G. V. Milovanović, Interpolation processes. Basic theory and applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008.Google Scholar
  10. 10.
    G. Mastroianni and J. Szabados, Polynomial approximation on the real semiaxis with generalized Laguerre weights, Stud. Univ. Babeş-Bolyai Math. 52 (2007), no. 4, 105–128.Google Scholar
  11. 11.
    G. Mastroianni and V. Totik,Weighted polynomial inequalities with doubling and A weights, Constr. Approx. 16 (2000), no. 1, 37–71.Google Scholar
  12. 12.
    I Notarangelo, Polynomial inequalities and embedding theorems with exponential weights in (–1, 1), Acta Math. Hungar. 134 (2012), no. 3, 286–306.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Giuseppe Mastroianni
    • 1
  • Incoronata Notarangelo
    • 1
  • József Szabados
    • 2
  1. 1.Department of Mathematics and Computer SciencesUniversity of BasilicataPotenzaItaly
  2. 2.Alfréd Rényi Institute of MathematicsBudapestHungary

Personalised recommendations