Mediterranean Journal of Mathematics

, Volume 10, Issue 1, pp 41–56 | Cite as

On Convergence of Chlodovsky and Chlodovsky–Kantorovich Polynomials in the Variation Seminorm

  • Harun Karsli


The aim of this paper is to study the variation detracting property and rate of approximation of the Chlodovsky and Chlodovsky–Kantorovich polynomials in the space of functions of bounded variation with respect to the variation seminorm.

Mathematics Subject Classification (2010)

Primary 41A25 41A35 Secondary 41A36 


Chlodovsky polynomials Chlodovsky–Kantorovich polynomials convergence in variation seminorm rate of convergence Voronovskaya–type theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agratini O.: On the variation detracting property of a class of operators, Appl. Math. Lett. 19, 1261–1264 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Albrycht J. Radecki J., (1960) On a generalization of the theorem of Voronovskaya, Zeszyty, Naukowe UAM, Zeszyt 2, Poznań 1-7.Google Scholar
  3. 3.
    Bardaro C., Butzer P.L., Stens R.L., Vinti G.: Convergence in Variation and Rates of Approximation for Bernstein–Type Polynomials and Singular Convolution Integrals. Analysis (Munich) 23((4), 299–346 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    S. N. Bernstein, Demonstration du Thĕoreme de Weierstrass fondĕe sur le calcul des probabilitĕs, Comm. Soc. Math. Kharkow 13, (1912/13), 1–2.Google Scholar
  5. 5.
    Bleimann G., Butzer P.L., Hahn L.: A Bernstein-type operator approximating continuous functionson the semi-axis, Indag. Math. 42, 255–262 (1980)MathSciNetMATHGoogle Scholar
  6. 6.
    Butzer P.L.: On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc. 5, 547–553 (1954)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    P.L. Butzer H. Berens, Semi-Groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag, New York 1967, xi+318 pp.Google Scholar
  8. 8.
    Butzer P.L, Karsli H.: Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Sz´sz-Mirakyan operator, Comment. Math., Vol. 49(No.1), 33–57 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Chlodovsky I.: Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein. Compositio Math. 4, 380–393 (1937)MathSciNetMATHGoogle Scholar
  10. 10.
    Floater M.S.: On the convergence of derivatives of Bernstein approximation. J. Approx. Theory 134, 130–135 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gadzhiev A.D.: The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P. Korovkin. Soviet. Math. Dokl. 15, 1433–1436 (1974)MATHGoogle Scholar
  12. 12.
    Hermann T.: Approximation of unbounded functions on unbounded interval. Acta. Math. Hungar. 29, 393–398 (1977)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    E. Ibikli and H. Karsli, Rate of convergence of Chlodowsky type Durrmeyer operators, JIPAM. J. Inequal. Pure Appl. Math. 6, no. 4, Article 106, (2005), 12 pp.Google Scholar
  14. 14.
    Karsli H, Pych-Taberska P.: On the rates of convergence of Bernstein– Chlodovsky polynomials and their Bézier-type variants. Appl. Anal. Volume 90(Issue 3-4), 403–416 (2011)MathSciNetGoogle Scholar
  15. 15.
    Lorentz G.G.: Bernstein polynomials. University of Toronto Press, Toronto (1953)MATHGoogle Scholar
  16. 16.
    Popoviciu T.: Sur l’approximation des fonctions convexes d’ordre supérieur. Mathematica (Cluj) 10, 49–54 (1935)Google Scholar
  17. 17.
    Pych-Taberska P.: Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions. Discuss. Math. Differ. Incl. Control Optim. 29, 53–66 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Pych-Taberska P, Karsli H.: On the rates of convergence of Chlodovsky–Kantorovich operators and their Bézier variant. Comment. Math. 49(No. 2), 189–208 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Faculty of Science and Arts, Department of MathematicsAbant Izzet Baysal UniversityGölköy–BoluTurkey

Personalised recommendations