Advertisement

Mediterranean Journal of Mathematics

, Volume 9, Issue 2, pp 327–336 | Cite as

On the Dual Notion of Prime Submodules (II)

  • Habibollah Ansari-Toroghy
  • Faranak Farshadifar
Article

Abstract

Let R be a commutative ring and let M be an R-module. In this paper, we study the dual notion of prime submodules (that is, second submodules of M). Also we introduce the dual notion of weak multiplication R-modules (that is, weak comultiplication modules) in terms of second submodules and investigate some related results.

Mathematics Subject Classification (2010)

13C13 13E99 

Keywords

Second submodules completely irreducible submodules and weak comultiplication modules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Saymeh S.: On dimension of finitely generated modules. Comm. Algebra 23(3), 1131–1144 (1995)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ansari-Toroghy H., Farshadifar F.: The dual notion of multiplication modules. Taiwanese J. Math. 11(4), 1189–1201 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Ansari-Toroghy H., Farshadifar F.: Comultiplication modules and related results. Honam Math. J. 30((1), 91–99 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    Ansari-Toroghy H., Farshadifar F., On the dual notion of multiplication modules, submittedGoogle Scholar
  5. 5.
    Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules, Algebra Colloq., to appear.Google Scholar
  6. 6.
    Azizi A.: Weak multiplication modules. Czech. Math. J. 53(128), 520–534 (2003)MathSciNetGoogle Scholar
  7. 7.
    L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.Google Scholar
  8. 8.
    I. Kaplansky, Commutative Rings, Allyn and Bacon, 1970.Google Scholar
  9. 9.
    H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge 1986.Google Scholar
  10. 10.
    R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra 19(5) (1991), 1327-1341.Google Scholar
  11. 11.
    McCasland R.L., Moore M.E., Smith P.F.: On the spectrum of a module over a commutative ring. Comm. Algebra 25(1), 79–103 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    McCasland R.L., Smith P.F.: Prime submodules of Noetherian modules. Rocky Mountain J. Math. 23(3), 1041–1062 (1993)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    McCasland R.L., Smith P.F.: Generalised associated primes and radicals of submodules. Int. Electron. J. Algebra 4, 159–176 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Pusat-Yilmaz D., Smith P.F.: Chain conditions in modules with krull dimension. Comm. Algebra 24(13), 4123–4133 (1996)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sharpe D.W., Vamos P., Injective modules, Cambridge University Press, 1972Google Scholar
  16. 16.
    Yassemi S.: Coassociated primes. Comm. Algebra 23, 1473–1498 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Yassemi S.: primes of modules over a commutative ring. Math. Scand. 80, 175–176 (1997)MathSciNetGoogle Scholar
  18. 18.
    Yassemi S.: The dual notion of the cyclic modules, Kobe. J.Math. 15, 41–46 (1998)MathSciNetMATHGoogle Scholar
  19. 19.
    Yassemi S.: The dual notion of prime submodules. Arch. Math. (Brno) 37, 273–278 (2001)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Habibollah Ansari-Toroghy
    • 1
  • Faranak Farshadifar
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations