Mediterranean Journal of Mathematics

, Volume 9, Issue 2, pp 295–304 | Cite as

On Cellular Covers with Free Kernels

  • José L. Rodríguez
  • Lutz Strüngmann


In this paper we show that every cotorsion-free and reduced abelian group of any finite rank (in particular, every free abelian group of finite rank) appears as the kernel of a cellular cover of some cotorsion-free abelian group of rank 2. This situation is the best possible in the sense that cotorsion-free abelian groups of rank 1 do not admit cellular covers with free kernel except for the trivial ones. This work is motivated by an example due to Buckner–Dugas, and recent results obtained by Fuchs–Göbel, and Göbel–Rodríguez–Strüngmann.

Mathematics Subject Classification (2010)

Primary: 20K20 20K30 Secondary: 16S60 16W20 


Cellular cover co-localization cotorsion-free free abelian group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Buckner and M. Dugas, Co-local subgroups of abelian groups, pp. 29–37 in Abelian groups, rings, modules and homological algebra; Proceedings in honor of Enochs, Lect. Notes Pure Appl. Math. 249, Chapman & Hill, Boca Raton, FL 2006.Google Scholar
  2. 2.
    J. Buckner and M. Dugas, Co-local subgroups of nilpotent groups of class 2, pp. 351–385, in Models, Modules and Abelian Groups, In Memory of A. L. S. Corner, Walter de Gruyter, Berlin, New York 2008.Google Scholar
  3. 3.
    W. Chachólski, E. Dror Farjoun, R. Göbel, and Y. Segev, Cellular covers of divisible abelian groups, pp. 77 – 97 in Alpine Perspectives on Algebraic Topology, Third Arolla conference on Algebraic Topology, edt. C. Ausoni, K. Hess, J. Scherer, Contemporary Math. AMS 504 (2009).Google Scholar
  4. 4.
    Dugas M.: Co-local subgroups of abelian groups II. J. Pure Appl. Algebra 208(1), 117–126 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Math. 1622 Springer-Verlag, Berlin–Heidelberg–New York 1996.Google Scholar
  6. 6.
    Dror Farjoun E., Göbel R., Segev Y., Shelah S.: On kernels of cellular covers. Groups Geom. Dyn. 1(4), 409–419 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Flores R.: Nullification and cellularization of classifying spaces of finite groups. Trans. Amer. Math. Soc. 359(4), 1791–1816 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    L. Fuchs, Infinite Abelian Groups – Vol. 1&2, Academic Press, New York (1970, 1973).Google Scholar
  9. 9.
    Fuchs L., Göbel R.: Cellular covers of abelian groups. Results Math. 53(1-2), 59–76 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    R. Göbel and J. Trlifaj, Approximation Theory and Endomorphism Algebras, Expositions in Mathematics 41 Walter de Gruyter, Berlin (2006).Google Scholar
  11. 11.
    R. Göbel, J. L. Rodríguez, and L. Strüngmann, Cellular covers of cotorsion-free modules,, submitted.
  12. 12.
    J. L. Rodríguez and J. Scherer, Cellular approximations using Moore spaces. Cohomological methods in homotopy theory (Bellaterra, 1998), 357–374, Progr. Math., 196, Birkhäuser, Basel (2001).Google Scholar
  13. 13.
    Rodríguez J.L., Scherer J.: A connection between cellularization for groups and spaces via two-complexes. J. Pure Appl. Algebra 212, 1664–1673 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.’Area de Geometría y Topología, Facultad de Ciencias ExperimentalesUniversity of AlmeríaAlmeríaSpain
  2. 2.Department of MathematicsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations