Mediterranean Journal of Mathematics

, Volume 7, Issue 1, pp 89–100 | Cite as

Semi-symmetric Lorentzian Three-manifolds Admitting a Parallel Degenerate Line Field

  • Giovanni Calvaruso
  • Barbara De Leo


We characterize semi-symmetric Lorentzian three-manifolds (M,g f ) admitting a parallel degenerate line field, through a condition on the defining function f. The admissible Segre types of the Ricci operator of (M,g f ) are also completely described, and semi-symmetric curvature homogeneous examples are presented in the possible different cases.

Mathematics Subject Classification (2010)

53C50 53C20 53C30 


Lorentzian manifolds semi-symmetric spaces Segre types 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Batat, G. Calvaruso and B. De Leo, Homogeneous structures on Lorentzian three-manifolds admitting a parallel null vector field. Preprint, 2008.Google Scholar
  2. 2.
    Boeckx E., Einstein-like semi-symmetric spaces. Arch. Math. (Brno) 29 (3-4) (1993), 235–240.MATHMathSciNetGoogle Scholar
  3. 3.
    Boeckx E., Calvaruso G. (2004) When is the unit tangent sphere bundle semisymmetric?. Tôhoku Math. J. 56(2): 357–366MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.Google Scholar
  5. 5.
    Bueken P., Djorić M. (2000) Three-dimensional Lorentz metric and curvature homogeneity of order one. Ann. Global Anal. Geom. 18(1): 85–103MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Calvaruso G. (2007) Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57: 1279–1291MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Calvaruso G., Three-dimensional semi-symmetric homogeneous Lorentzian manifolds. Acta Math. Hungar., 121 (1-2) (2008), 157–170.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calvaruso G., Vanhecke L., Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (4) (1997), 789–800.MATHMathSciNetGoogle Scholar
  9. 9.
    Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A 38 (4) (2005),841–850.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. O’Neill, Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.Google Scholar
  11. 11.
    Szabó Z.I., Structure theorems on Riemannian manifolds satisfying R(X, Y) · R = 0. I, the local version. J. Differential Geom. 17 (1982), 531–582.MATHMathSciNetGoogle Scholar
  12. 12.
    H. Takagi, ,, An example of Riemannian manifold satisfying R(X, Y) · R but not ∇R = 0. Tôhoku Math. J. 24 (1972), 105–108.Google Scholar
  13. 13.
    Tricerri F., Vanhecke L., Curvature homogeneous Riemannian manifolds. Ann. Sci. École Norm. Sup. 22 ( 4) (1989), 535–554.MATHMathSciNetGoogle Scholar
  14. 14.
    Walker A.G. (1950) Canonical form for a Riemannian space with a parallel field of null planes. Quart. J. Math., Oxford Ser. (2) 1: 69–79MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica “E. De Giorgi”Università del SalentoLecceItaly

Personalised recommendations