Ternary Clifford Algebras


Ternary Clifford algebras are an essential ingredient in a cubic factorization of the Laplacian and using a ternary Clifford analysis build on such spaces one obtains a Dirac-type operator D such that \(D^3=\Delta \). This paper is a continuation of the work of the authors in describing properties of generalized ternary Clifford algebras. Here we explore a blade decomposition and symmetries of these algebras.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abramov, V., Kerner, R., Liivapuu, O.: Algebras with Ternary Composition Law Combining \({\mathbb{Z}}_2\) and \({\mathbb{Z}}_3\) Gradings, Algebraic Structures and Applications. In: Silvestrov, S., Malyarenko, A., Rancic, M. (eds.) Springer Proceedings in Mathematics and Statistics, SPAS 2017, pp. 13–44 (2020)

  2. 2.

    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis, Research Notes in Mathematics, vol. 76. Pitman Advanced Publishing, Boston (1982)

  3. 3.

    Cerejeiras, P., Fonseca, A., Kähler, U., Vieira, N.: Fischer decomposition in generalized fractional Clifford analysis, Advances in Complex Analysis and Operator Theory. Trends in Mathematics. Birkhäuser, pp. 37–53 (2017)

  4. 4.

    Cerejeiras, P., Fonseca, A., Vajiac, M., Vieira, N.: Fischer decomposition in generalized fractional ternary Clifford analysis. Complex Anal. Oper. Theory 11(5), 1077–1093 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Davvaz, B., Dudek, W.A., Vougiouklis, T.: A generalization of \(n\)-ary algebraic systems. Commun. Algebra 37(4), 1248–1263 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Delanghe, R., Sommen, F., Souc̆ek, V.: Clifford algebras and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, vol. 53. Kluwer, Dordrecht (1992)

  7. 7.

    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice. Wiley, Chichester (1997)

    Google Scholar 

  8. 8.

    Kerner, R.: Cubic and Ternary Algebras, Ternary Symmetries and the Lorentz Group, Proceedings of Math. Phys. Conference, RIMS (Kyoto), vol. 1705, pp. 134–146 (2010)

  9. 9.

    Kerner, R.: \(Z_3\)-graded algebras and the cubic root of the supersymmetry translations. J. Math. Phys. 33, 403 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Lipatov, L.N., Rausch de Traubenberg, M., Volkov, G.G.: On the ternary complex analysis and its applications. J. Math. Phys. 49(1), 013502 (2008)

  11. 11.

    Rausch de Traubenberg, M.: Clifford algebras of polynomials generalized Grassmann algebras and q-deformed Heisenberg algebras. Adv. Appl. Clifford Algebras 4(2), 131–144 (1994)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Struppa, D.C., Vajiac, A., Vajiac, M.B.: Holomorphy in Multicomplex Spaces, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, vol. 221, pp. 617–634. Birkhäuser (Springer) (2012)

  13. 13.

    Trovon, A., Suzuki, O.: Noncommutative Galois extensions and ternary Clifford analysis. Adv. Appl. Clifford Algebras 27, 59–70 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Vainerman, L., Kerner, R.: On special classes of n-Algebras. J. Math. Phys. 37(5), 2553–2565 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Vajiac, M., Vajiac, A.: Multicomplex hyperfunctions. Complex Var. Ellipt. Equ. 57(7–8), 751–762 (2012)

    MathSciNet  Article  Google Scholar 

Download references


The work of P. Cerejeiras was supported by Portuguese funds through the CIDMA—Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT—Fundação para a Ciência e a Tecnologia”), within project references UIDB/04106/2020 and UIDP/04106/2020 as well as under the FCT Sabbatical grant ref. SFRH/BSAB/143104/2018. The authors would also like to thank the anonymous referees for their input. These relevant discussions contributed greatly towards the improvement of this manuscript.

Author information



Corresponding author

Correspondence to M. Vajiac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on ISAAC 12 at Aveiro, July 29-August 2, 2019, edited by Swanhild Bernstein, Uwe Kaehler, Irene Sabadini, and Franciscus Sommen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerejeiras, P., Vajiac, M. Ternary Clifford Algebras. Adv. Appl. Clifford Algebras 31, 13 (2021). https://doi.org/10.1007/s00006-020-01114-3

Download citation

Mathematics Subject Classification

  • Primary 30G35
  • Secondary 26A33
  • 30A05
  • 31B05