Abstract
In this article, we provide a complete classification of left octonionic modules (finite or infinite dimensions) in terms of new notions such as associative elements and conjugate associative elements. We give a simple approach to determine the irreducible left \(\mathbb {O}\)-modules by utilizing the Clifford algebra \(C\ell _{7}\). We find that every left \(\mathbb {O}\)-module has a basis in some sense. This means that every left \(\mathbb {O}\)-module is a “free” module.
This is a preview of subscription content, access via your institution.

References
- 1.
Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3((suppl, suppl. 1)), 3–38 (1964)
- 2.
Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39(2), 145–205 (2002)
- 3.
Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1999). With an appendix by David A. Buchsbaum, Reprint of the 1956 original
- 4.
Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus, Progress in Mathematics, vol. 289. Birkhäuser/Springer Basel AG, Basel (2011). Theory and applications of slice hyperholomorphic functions
- 5.
Eilenberg, S.: Extensions of general algebras. Ann. Soc. Polon. Math. 21, 125–134 (1948)
- 6.
Ghiloni, R., Moretti, V., Perotti, A.: Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys. 25(4), 1350006 (2013)
- 7.
Gilbert, J.E., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics, vol. 26. Cambridge University Press, Cambridge (1991)
- 8.
Goldstine, H.H., Horwitz, L.P.: Hilbert space with non-associative scalars. I. Math. Ann. 154, 1–27 (1964)
- 9.
Harvey, F.R.: Spinors and Calibrations, Perspectives in Mathematics, vol. 9. Academic Press, Boston (1990)
- 10.
Horwitz, L.P., Razon, A.: Tensor product of quaternion Hilbert modules. In: Classical and Quantum Systems (Goslar, 1991), pp. 266–268. World Sci. Publ., River Edge (1993)
- 11.
Jacobson, N.: Structure of alternative and Jordan bimodules. Osaka Math. J. 6, 1–71 (1954)
- 12.
Ludkovsky, S.V.: Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra. Sovrem. Mat. Prilozh. 35, 98–162 (2005)
- 13.
Ludkovsky, S.V., Sprössig, W.: Spectral representations of operators in Hilbert spaces over quaternions and octonions. Complex Var. Elliptic Equ. 57(12), 1301–1324 (2012)
- 14.
McIntosh, A.: Book Review: Clifford algebra and spinor-valued functions, a function theory for the Dirac operator. Bull. Am. Math. Soc. (N.S.) 32(3), 344–348 (1995)
- 15.
Ng, C.-K.: On quaternionic functional analysis. Math. Proc. Camb. Philos. Soc. 143(2), 391–406 (2007)
- 16.
Razon, A., Horwitz, L.P.: Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules. J. Math. Phys. 33(9), 3098–3104 (1992)
- 17.
Razon, A., Horwitz, L.P.: Projection operators and states in the tensor product of quaternion Hilbert modules. Acta Appl. Math. 24(2), 179–194 (1991)
- 18.
Schafer, R.D.: An Introduction to Nonassociative Algebras. Dover Publications, New York (1995). Corrected reprint of the (1966) original
- 19.
Soffer, A., Horwitz, L.P.: \(B^{\ast } \)-algebra representations in a quaternionic Hilbert module. J. Math. Phys. 24(12), 2780–2782 (1983)
- 20.
Viswanath, K.: Normal operations on quaternionic Hilbert spaces. Trans. Am. Math. Soc. 162, 337–350 (1971)
- 21.
Wang, H., Ren, G.: Octonion analysis of several variables. Commun. Math. Stat. 2(2), 163–185 (2014)
- 22.
Zhevlakov, K.A., Slinko, A.M., Shestakov, I.P., Shirshov, A.I.: Rings that are Nearly Associative, Pure and Applied Mathematics, vol. 104. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1982). Translated from the Russian by Harry F. Smith
Acknowledgements
The authors would like to thank the referees for the very detailed comments and correct suggestions that really helped to improve this paper.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the NNSF of China (11771412).
Communicated by Jacques Helmstetter.
Rights and permissions
About this article
Cite this article
Huo, Q., Li, Y. & Ren, G. Classification of Left Octonionic Modules. Adv. Appl. Clifford Algebras 31, 11 (2021). https://doi.org/10.1007/s00006-020-01113-4
Received:
Accepted:
Published:
Mathematics Subject Classification
- 17A05
Keywords
- Octonionic module
- Associative element
- Conjugate associative elements
- \(C\ell _{7}\)-module