Skip to main content
Log in

Classical Field Theories from Hamiltonian Constraint: Local Symmetries and Static Gauge Fields

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We consider the Hamiltonian constraint formulation of classical field theories, which treats spacetime and the space of fields symmetrically, and utilizes the concept of momentum multivector. The gauge field is introduced to compensate for non-invariance of the Hamiltonian under local transformations. It is a position-dependent linear mapping, which couples to the Hamiltonian by acting on the momentum multivector. We investigate symmetries of the ensuing gauged Hamiltonian, and propose a generic form of the gauge field strength. In examples we show how a generic gauge field can be specialized in order to realize gravitational and/or Yang–Mills interaction. Gauge field dynamics is not discussed in this article. Throughout, we employ the mathematical language of geometric algebra and calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldrovandi, R., Pereira, J.G.: Teleparallel Gravity: An Introduction. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  2. de Andrade, V.C., Guillen, L.C.T., Pereira, J.G.: Teleparallel gravity: an overview. arXiv:gr-qc/0011087 (2000)

  3. De Donder, T.: Théorie invariantive du calcul des variations, Nouv. éd, Gauthiers-Villars, Paris (1935)

  4. De León, M., Martín De Diego, D., Santamaría-Merino, A.: Int. J. Geom. Methods Mod. Phys. 01, 651 (2004). arXiv:math-ph/0404013

    Article  Google Scholar 

  5. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys Rev 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  6. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  7. Doran, C.J.L., Hestenes, D., Sommen, F., van Acker, N.: Lie groups as spin groups. J. Math. Phys. 34(8), 3642–3669 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: J. Math. Phys. 39, 4578 (1998). arXiv:dg-ga/9707001

    Article  ADS  MathSciNet  Google Scholar 

  9. Einstein, A.: The Formal Foundation of the General Theory of Relativity (orig. Formale Grundlage der allgemeinen Relativitätstheorie). Sitzungsber. Preuss. Akad. Wiss., Berlin, pp. 1030–1085 (1914)

  10. Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relativ. 7, 2 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Goenner, H.F.M.: On the history of unified field theories: part II (ca. 1930, ca. 1965). Living Rev. Relativ. 17, 5 (2014)

  12. Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical relativistic fields. Part I: covariant field theory (2004). arXiv:physics/9801019v2

  13. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum Maps and Classical Relativistic Fields. Canonical Analysis of Field Theories, Part II (2004). arXiv:math-ph/0411032

  14. Hélein, F.: Multisymplectic formalism and the covariant phase space (2011). arXiv:1106.2086

  15. Hélein, F., Kouneiher, J.: Finite dimensional Hamiltonian formalism for gauge and quantum field theories. J. Math. Phys. 43, 2306 (2002). arXiv:math-ph/0010036

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hestenes, D.: Gauge theory gravity with geometric calculus. Found. Phys. 35, 903 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Springer, Berlin (1987)

    MATH  Google Scholar 

  18. Kanatchikov, I.V.: Rep. Math. Phys. 41, 49 (1998). arXiv:hep-th/9709229

    Article  ADS  MathSciNet  Google Scholar 

  19. Kanatchikov, I.V.: Rep. Math. Phys. 43, 157–170 (1999). arXiv:hep-th/9810165

    Article  ADS  MathSciNet  Google Scholar 

  20. Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philos. Trans. R. Soc. Lond. A 356, 487–582 (1998). arXiv:gr-qc/0405033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, New York (1973)

    Google Scholar 

  22. Peskin, M.E., Schroeder, D.V.: An Introduction To Quantum Field Theory. Westview Press, Boulder (1995)

    Google Scholar 

  23. Ramond, P.: Field Theory: A Modern Primer, 2nd edn. Westview Press, Boulder (1997)

    MATH  Google Scholar 

  24. Riesz, M.: Clifford Numbers and Spinors. Kluwer Academic, Dordrecht (1993)

    Book  MATH  Google Scholar 

  25. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  26. Sardanashvily, G.: Generalized Hamiltonian Formalism for Field Theory. World Scientific, Singapore (2005)

    Google Scholar 

  27. Struckmeier, J., Redelbach, A.: Int. J. Mod. Phys. E 17, 435–491 (2008). arXiv:0811.0508

    Article  ADS  Google Scholar 

  28. Weyl, H.: Geodesic fields in the calculus of variation for multiple integrals. Ann. Math. 36(2), 607–629 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zatloukal, V.: Classical field theories from Hamiltonian constraint: canonical equations of motion and local Hamilton–Jacobi theory. Int. J. Geom. Methods Mod. Phys. 13, 1650072 (2016). arXiv:1504.08344

    Article  MathSciNet  MATH  Google Scholar 

  30. Zatloukal, V.: Classical field theories from Hamiltonian constraint: symmetries and conservation laws (2016). arXiv:1604.03974

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Zatloukal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatloukal, V. Classical Field Theories from Hamiltonian Constraint: Local Symmetries and Static Gauge Fields. Adv. Appl. Clifford Algebras 28, 48 (2018). https://doi.org/10.1007/s00006-018-0865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0865-8

Keywords

Navigation